Advertisement

Strategies to Reuse Cellulase: Immobilization of Enzymes (Part II)

  • Muhammad Irfan
  • Misbah Ghazanfar
  • Amad Ur Rehman
  • Asma Siddique
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Industrial applications need enzymes that are economically viable and highly stable in terms of reusability, thus increasing practicability. The immobilization of cellulases is reported here using different chemical methods and polymeric supports. High costs of cellulases are one of the many obstacles for commercialization of biomass biorefineries. Cellulase immobilization allows the conditions of use of enzyme again and again retaining its activity and reducing production costs to use it for industrial application. Enzyme immobilization is accomplished by adsorption, entrapment, covalent binding, cross-linking, and encapsulation. Support material acts as a carrier for immobilized enzyme, having mechanical strength, large surface area, resistance to microbial attack, and many surface groups promoting interaction with enzyme. One procedure where no support is used is the formation of cross-linked enzyme aggregates (CLEA) in which enzyme cross-links with other enzyme-forming insoluble aggregate.

Keywords

Immobilization Cellulases Cellulases Polymer matrix Enzyme industry 

References

  1. Ahmad R, Sardar M (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem 4(2):1Google Scholar
  2. Alkan S, Gür A, Ertan M, Savran A, Gür T, Genel Y (2009) Immobilization of catalase via adsorption into natural and modified active carbon obtained from walnut in various methods. Afr J Biotechnol 8(11):2631–2635Google Scholar
  3. Andriani D, Sunwoo C, Ryu HW, Prasetya B, Park DH (2012) Immobilization of cellulase from newly isolated strain Bacillus subtilis TD6 using calcium alginate as a support material. Bioprocess Biosyst Eng 35(1–2):29–33PubMedCrossRefGoogle Scholar
  4. Apetrei IM, Rodriguez-Mendez ML, Apetrei C, De Saja JA (2013) Enzyme sensor based on carbon nanotubes/cobalt (II) phthalocyanine and tyrosinase used in pharmaceutical analysis. Sensors Actuators B Chem 177:138–144CrossRefGoogle Scholar
  5. Atadashi IM, Aroua MK, Aziz AA (2010) High quality biodiesel and its diesel engine application: a review. Renew Sust Energ Rev 14(7):1999–2008CrossRefGoogle Scholar
  6. Bai Y, Huang H, Meng K, Shi P, Yang P, Luo H et al (2012) Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry. Food Chem 131(4):1473–1478CrossRefGoogle Scholar
  7. Betigeri SS, Neau SH (2002) Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 23(17):3627–3636PubMedCrossRefGoogle Scholar
  8. Bommarius AS, Riebel BR (2004) Biocatalysis: fundamentals and applications. Wiley. Appl Organometalic Chem 18: 373Google Scholar
  9. Cao L, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14(4):387–394PubMedCrossRefGoogle Scholar
  10. Ceniceros ES, Ilyina A, Esquivel JC, Menchaca DR, Espinoza JF, Rodriguez OM (2003) Entrapment of enzymes in natural polymer extracted from residue of food industry: preparation methods, partial characterisation and possible application. Becth Mock 44:84–87Google Scholar
  11. Cerveró JM, Skovgaard PA, Felby C, Sørensen HR, Jørgensen H (2010) Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzym Microb Technol 46(3–4):177–184CrossRefGoogle Scholar
  12. Chang MY, Juang RS (2007) Use of chitosan–clay composite as immobilization support for improved activity and stability of β-glucosidase. Biochem Eng J 35(1):93–98CrossRefGoogle Scholar
  13. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14(4):438–443PubMedCrossRefGoogle Scholar
  14. Cordeiro AL, Lenk T, Werner C (2011) Immobilization of Bacillus licheniformis α-amylase onto reactive polymer films. J Biotechnol 154(4):216–221PubMedCrossRefGoogle Scholar
  15. D’Souza SF (1998) Immobilized enzymes in bioprocess. Curr Sci 77:69–79Google Scholar
  16. Daoud FBO, Kaddour S, Sadoun T (2010) Adsorption of cellulase Aspergillus niger on a commercial activated carbon: kinetics and equilibrium studies. Colloids Surf B 75(1):93–99CrossRefGoogle Scholar
  17. Das R, Ghosh S, Bhattacharjee C (2012) Enzyme membrane reactor in isolation of antioxidative peptides from oil industry waste: a comparison with non-peptidic antioxidants. LWT-Food Sci Technol 47(2):238–245CrossRefGoogle Scholar
  18. Dowe N (2009) Assessing cellulase performance on pretreated lignocellulosic biomass using saccharification and fermentation-based protocols. In: Biofuels. Humana Press, Totowa, pp 233–245CrossRefGoogle Scholar
  19. Flores-Maltos A, Rodríguez-Durán LV, Renovato J, Contreras JC, Rodríguez R, Aguilar CN (2011) Catalytical properties of free and immobilized Aspergillus niger tannase. Enzym Res 2011:768183.Google Scholar
  20. Gomes-Ruffi CR, da Cunha RH, Almeida EL, Chang YK, Steel CJ (2012) Effect of the emulsifier sodium stearoyl lactylate and of the enzyme maltogenic amylase on the quality of pan bread during storage. LWT-Food Sci Technol 49(1):96–101CrossRefGoogle Scholar
  21. Gupta A, Khare SK (2009) Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology. Crit Rev Biotechnol 29(1):44–54PubMedCrossRefGoogle Scholar
  22. Hakala TK, Liitiä T, Suurnäkki A (2013) Enzyme-aided alkaline extraction of oligosaccharides and polymeric xylan from hardwood kraft pulp. Carbohydr Polym 93(1):102–108PubMedCrossRefGoogle Scholar
  23. Hartmann M (2005) Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater 17(18):4577–4593CrossRefGoogle Scholar
  24. Hsieh HJ, Liu PC, Liao WJ (2000) Immobilization of invertase via carbohydrate moiety on chitosan to enhance its thermal stability. Biotechnol Lett 22(18):1459–1464CrossRefGoogle Scholar
  25. Husain Q (2017) Nanomaterials immobilized cellulolytic enzymes and their industrial applications: a literature review. Biol 4(3):1029Google Scholar
  26. Ismail B, Nielsen SS (2010) Invited review: plasmin protease in milk: current knowledge and relevance to dairy industry. J Dairy Sci 93(11):4999–5009PubMedCrossRefGoogle Scholar
  27. Jaros D, Rohm H (2015) Enzymes exogenous to Milk in dairy technology: transglutaminase. Reference Module in Food Science. 10.1016/B978-0-08-100596-5.21158-X.Google Scholar
  28. Jegannathan KR, Jun-Yee L, Chan ES, Ravindra P (2010) Production of biodiesel from palm oil using liquid core lipase encapsulated in κ-carrageenan. Fuel 89(9):2272–2277CrossRefGoogle Scholar
  29. Jordan J, Theegala C (2014) Probing the limitations for recycling cellulase enzymes immobilized on iron oxide (Fe 3 O 4) nanoparticles. Biomass Conv Biorefinery 4(1):25–33CrossRefGoogle Scholar
  30. Jordan J, Kumar CS, Theegala C (2011) Preparation and characterization of cellulase-bound magnetite nanoparticles. J Mol Catal B Enzym 68(2):139–146CrossRefGoogle Scholar
  31. Kapoor M, Kuhad RC (2007) Immobilization of xylanase from Bacillus pumilus strain MK001 and its application in production of xylo-oligosaccharides. Appl Biochem Biotechnol 142(2):125–138PubMedCrossRefGoogle Scholar
  32. Kawaguti HY, Manrich E, Sato HH (2006) Production of isomaltulose using Erwinia sp. D12 cells: culture medium optimization and cell immobilization in alginate. Biochem Eng J 29(3):270–277CrossRefGoogle Scholar
  33. Klein MP, Scheeren CW, Lorenzoni ASG, Dupont J, Frazzon J, Hertz PF (2011) Ionic liquid-cellulose film for enzyme immobilization. Process Biochem 46(6):1375–1379CrossRefGoogle Scholar
  34. Kress J, Zanaletti R, Amour A, Ladlow M, Frey JG, Bradley M (2002) Enzyme accessibility and solid supports: which molecular weight enzymes can be used on solid supports? An investigation using confocal Raman microscopy. Chem Eur J 8(16):3769–3772PubMedCrossRefGoogle Scholar
  35. Kulkarni SJ (2014) Use of biotechnology for synthesis of various products from different feedstocks-a review. Int J Adv Res Biotechnol 2(2):1–3Google Scholar
  36. Kulkarni SJ, Shinde NL, Goswami AK (2015) A review on ethanol production from agricultural waste raw material. Int J Sci Res Sci Eng Technol 1:231–233Google Scholar
  37. Liao HD, Yuan L, Tong CY, Zhu YH, Li D, Liu XM (2008) Immobilization of cellulase based on polyvinyl alcohol/Fe2O3 nanoparticles. Chem J Chin Univ 29:1564–1568Google Scholar
  38. Luo K, Yang QI, Yu J, Li XM, Yang GJ, Xie BX, Zeng GM (2011) Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification. Bioresour Technol 102(14):7103–7110PubMedCrossRefGoogle Scholar
  39. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251(4999):1318–1323CrossRefGoogle Scholar
  40. Mabee WE, Saddler JN (2010) Bioethanol from lignocellulosics: status and perspectives in Canada. Bioresour Technol 101(13):4806–4813PubMedCrossRefGoogle Scholar
  41. Massolini G, Calleri E (2005) Immobilized trypsin systems coupled on-line to separation methods: recent developments and analytical applications. J Sep Sci 28(1):7–21PubMedCrossRefGoogle Scholar
  42. Matto M, Husain Q (2009) Calcium alginate–starch hybrid support for both surface immobilization and entrapment of bitter gourd (Momordica charantia) peroxidase. J Mol Catal B Enzym 57(1–4):164–170CrossRefGoogle Scholar
  43. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(1):52–68CrossRefGoogle Scholar
  44. Ortega N, Busto MD, Perez-Mateos M (2001) Kinetics of cellulose saccharification by Trichoderma reesei cellulases. Int Biodeter Biodegr 47(1):7–14CrossRefGoogle Scholar
  45. Phadtare S, Vyas S, Palaskar DV, Lachke A, Shukla PG, Sivaram S, Sastry M (2004) Enhancing the reusability of endoglucanase-gold nanoparticle bioconjugates by tethering to polyurethane microspheres. Biotechnol Prog 20(6):1840–1846PubMedCrossRefGoogle Scholar
  46. Raafat AI, Araby E, Lotfy S (2012) Enhancement of fibrinolytic enzyme production from Bacillus subtilis via immobilization process onto radiation synthesized starch/dimethylaminoethyl methacrylate hydrogel. Carbohydr Polym 87(2):1369–1374CrossRefGoogle Scholar
  47. Rao CS, Prakasham RS, Rao AB, Yadav JS (2008) Functionalized alginate as immobilization matrix in enantioselective L (+) lactic acid production by Lactobacillus delbrucekii. Appl Biochem Biotechnol 149(3):219–228PubMedCrossRefGoogle Scholar
  48. Rao CS, Sathish T, Ravichandra P, Prakasham RS (2009) Characterization of thermo-and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem 44(3):262–268CrossRefGoogle Scholar
  49. Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 6(1):461Google Scholar
  50. Satar R, Matto M, Husain Q (2008) Studies on calcium alginate-pectin gel entrapped concanavalin A-bitter gourd (Momordica charantia) peroxidase complex. J Sci Ind Res 67:609–615Google Scholar
  51. Schückel J, Matura A, Van Pee KH (2011) One-copper laccase-related enzyme from Marasmius sp.: purification, characterization and bleaching of textile dyes. Enzym Microb Technol 48(3):278–284CrossRefGoogle Scholar
  52. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349(8–9):1289–1307CrossRefGoogle Scholar
  53. Singh BD (2009) Biotechnology expanding horizons. Kalyani, LudhianaGoogle Scholar
  54. Soldatkin OO, Kucherenko IS, Pyeshkova VM, Kukla AL, Jaffrezic-Renault N, El'Skaya AV et al (2012) Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions. Bioelectrochemistry 83:25–30PubMedCrossRefGoogle Scholar
  55. Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443PubMedCrossRefGoogle Scholar
  56. Tong Z, Qingxiang Z, Hui H, Qin L, Yi Z (1997) Removal of toxic phenol and 4-chlorophenol from waste water by horseradish peroxidase. Chemosphere 34(4):893–903CrossRefGoogle Scholar
  57. Tonini D, Astrup T (2012) Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste. Waste Manag 32(1):165–176PubMedCrossRefGoogle Scholar
  58. Tümtürk H, Karaca N, Demirel G, Şahin F (2007) Preparation and application of poly (N, N-dimethylacrylamide-co-acrylamide) and poly (N-isopropylacrylamide-co-acrylamide)/κ-Carrageenan hydrogels for immobilization of lipase. Int J Biol Macromol 40(3):281–285PubMedCrossRefGoogle Scholar
  59. Ur Rehman A, Kovacs Z, Quitmann H, Ebrahimi M, Czermak P (2016) Enzymatic production of fructooligosaccharides from inexpensive and abundant substrates using a membrane reactor system. Sep Sci Technol 51(9):1537–1545Google Scholar
  60. van de Velde F, Lourenço ND, Pinheiro HM, Bakker M (2002) Carrageenan: A Food Grade and Biocompatible Support for Immobilisation Techniques. Adv Synth & Catal 344(8):815–835Google Scholar
  61. Verma ML, Puri M, Barrow CJ (2016) Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 36(1):108–119PubMedCrossRefGoogle Scholar
  62. Wu SC, Lia YK (2008) Application of bacterial cellulose pellets in enzyme immobilization. J Mol Catal B Enzym 54(3–4):103–108CrossRefGoogle Scholar
  63. Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Muhammad Irfan
    • 1
  • Misbah Ghazanfar
    • 1
  • Amad Ur Rehman
    • 2
  • Asma Siddique
    • 3
  1. 1.Department of BiotechnologyUniversity of SargodhaSargodhaPakistan
  2. 2.Institute of Bioprocess Engineering and Pharmaceutical TechnologyMittelhessen University of Applied SciencesGiessenGermany
  3. 3.Physics of Surfaces, Center of Smart InterfacesTechnical University DarmstadtDarmstadtGermany

Personalised recommendations