Advertisement

Current Advancements in Recombinant Technology for Industrial Cellulases: Part-I

  • Abhishek Dutt Tripathi
  • Suresh Kumar Srivastava
  • Kamlesh Kumar Maurya
  • Sadhna Mishra
  • Diksha Shaw
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Cellulases are one of the widely used enzymes in different industries such as pharma, paper, detergent, agriculture, and food. These are gaining significant interest nowadays owing to their ability to convert the cellulosic biomass in to valuable products including second-generation biofuels and other bioprocess-based products. There has been a significant advancement in the commercial production of cellulase enzyme by using recombinant DNA technology. Recombinant DNA technology facilitates the conversion of noncellulolytic-producing microbes to enzyme-producing one by transferring the desired genes from known microbes. The gene responsible for cellulase production can be extracted from the cellulolytic microbes and can be inserted and expressed in target bacterium using a suitable vector. The gene of interest can be transferred by direct or indirect gene transfer method in the fast replicating microbe. Fungi and molds are predominant sources of cellulase enzyme, but their production and recovery cost is higher which makes them unsuitable for commercial production. The potential recombinant microbe producing cellulase can enhance the overall product yield by showing enormous growth potential and production on inexpensive substrate such as agro-industrial waste in lesser time making the process economical. This chapter deals with the new advancement in cellulase production by recombinant strains. The chapter comprises the information regarding different gene construct expressing cellulase enzyme, their fermentative production, recovery, and potential applications at industrial level.

Keywords

Cellulase Solid state fermentation Enzyme stability Recombinant technology Chimeric DNA 

References

  1. Abdulla HM, El-Shatoury SA (2007) Actinomycetes in rice straw decomposition. Waste Manag 27(6):850–853PubMedCrossRefGoogle Scholar
  2. Ali N, Athar MA, Khan YH, Idrees M, Ahmad D (2014) Regulation and improvement of cellulase production: recent advances. Nat Resour 5:857–863Google Scholar
  3. Bamforth CW (2009) Current perspectives on the role of enzymes in brewing. J Cereal Sci 50(3):353–357CrossRefGoogle Scholar
  4. Beckham GT, Bomble YJ, Matthews JF, Taylor CB, Resch MG, Yarbrough JM, Decker SR, Bu L, Zhao X, McCabe C, Wohlert J, Bergenstrahle M, Brady JW, Adney WS, Himmel ME, Crowley MF (2010) The O-Glycosylated linker from the Trichoderma reesei family 7 cellulase is a flexible, disordered protein. Biophys J 99:3773–3781PubMedPubMedCentralCrossRefGoogle Scholar
  5. Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58PubMedCrossRefGoogle Scholar
  6. Behera BC, Sethi BK, Mishra RR, Dutta SK, Thatoi HN (2017) Microbial cellulases–Diversity & biotechnology with reference to mangrove environment: a review. J Genet Eng Biotechnol 15(1):197–210Google Scholar
  7. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bowen RM, Harper SHT (1990) Decomposition of wheat straw and related compounds by fungi isolated from straw in arable soils. Soil Biol Biochem 22(3):393–399CrossRefGoogle Scholar
  9. Buchert J, Oksanen T, Pere J, Siika-Aho M, Suurnäkki A, Viikari L (1998) Applications of Trichoderma reesei enzymes in the pulp and paper industry. Trichoderma Gliocladium 2:343–363Google Scholar
  10. Çinar I (2005) Effects of cellulase and pectinase concentrations on the colour yield of enzyme extracted plant carotenoids. Process Biochem 40(2):945–949CrossRefGoogle Scholar
  11. Cowan WD (1996) Animal feed,[w:]. In: Godfrey T, West S (eds) Industrial enzymology, 2nd edn. Macmillan Press, London, UK, pp 360–371Google Scholar
  12. De Carvalho LMJ, De Castro IM, Da Silva CAB (2008) A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus, L. Merril) by micro-and ultra-filtration. J Food Eng 87(4):447–454CrossRefGoogle Scholar
  13. De Faveri D, Aliakbarian B, Avogadro M, Perego P, Converti A (2008) Improvement of olive oil phenolics content by means of enzyme formulations: effect of different enzyme activities and levels. Biochem Eng J 41(2):149–156CrossRefGoogle Scholar
  14. Dhiman TR, Zaman MS, Gimenez RR, Walters JL, Treacher R (2002) Performance of dairy cows fed forage treated with fibrolytic enzymes prior to feeding. Anim Feed Sci Technol 101(1–4):115–125CrossRefGoogle Scholar
  15. Dourado F, Bastos M, Mota M, Gama FM (2002) Studies on the properties of Celluclast/Eudragit L-100 conjugate. J Biotechnol 99(2):121–131PubMedCrossRefGoogle Scholar
  16. Escobar MO, Hue NV (2008) Temporal changes of selected chemical properties in three manure–amended soils of Hawaii. Bioresour Technol 99(18):8649–8654CrossRefGoogle Scholar
  17. Ferbiyanto A, Rusmana I, Raffiudin R (2015) Characterization and identification of cellulolytic bacteria from gut of worker Macrotermes gilvus. HAYATI J Biosci 22:197–200CrossRefGoogle Scholar
  18. Galante YM, De Conti A, Monteverdi R (1998a) Application of Trichoderma enzymes in food and feed industries. In: Harman GF, Kubicek CP (eds) Trichoderma and gliocladium—enzymes, vol. 2 of biological control and commercial applications. Taylor & Francis, London, pp 311–326Google Scholar
  19. Galante YM, De Conti RA, Harman GF, Kubicek CP (eds) (1998b) Trichoderma & gliocladium—enzymes, biological control and commercial applications. Taylor & Francis, London, pp 327–342Google Scholar
  20. Godfrey T, Godfrey T, West S (1996) Industrial enzymology, 2nd edn. Macmillan Press, London, pp 360–371Google Scholar
  21. Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour Technol 100(3):1214–1220PubMedCrossRefGoogle Scholar
  22. Gupta R, Khasa YP, Kuhad RC (2011a) Evaluation of pretreatment methods in improving the enzymatic saccharification of cellulosic materials. Carbohydr Polym 84(3):1103–1109CrossRefGoogle Scholar
  23. Gupta R, Mehta G, Khasa YP, Kuhad RC (2011b) Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 22(4):797–804PubMedCrossRefGoogle Scholar
  24. Gupta R, Mehta G, Deswal D, Sharma S, Jain KK, Kuhad RC, Singh A (2013) Cellulases and their biotechnological applications. In: Biotechnology for environmental management and resource recovery. Springer, India, pp 89–106.  https://doi.org/10.1007/978-81-322-0876-1_6CrossRefGoogle Scholar
  25. Harman GE, Kubicek CP (1998) Trichoderma and gliocladium: enzymes, vol. 2 of biological control and commercial applications. Taylor & Francis, LondonGoogle Scholar
  26. Hebeish A, Ibrahim NA (2007) The impact of frontier sciences on textile industry. Colourage 54(4):41–55Google Scholar
  27. Hsu JC, Lakhani NN (2002) U.S. Patent No. 6,413,363. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  28. Hu Y, Du C, Pensupa N, Lin CSK (2018) Optimisation of fungal cellulase production from textile waste using experimental design. Process Saf Environ Prot.  https://doi.org/10.1016/j.psep.2018.06.009CrossRefGoogle Scholar
  29. Ibrahim ASS, El-diwany AI (2007) Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust J Basic Appl Sci 1(4):473–478Google Scholar
  30. Ibrahim NA, El-Badry K, Eid BM, Hassan TM (2011) A new approach for biofinishing of cellulose-containing fabrics using acid cellulases. Carbohydr Polym 83(1):116–121CrossRefGoogle Scholar
  31. Idris ASO, Pandey A, Rao SS, Sukumaran RK (2017) Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum Stover. Bioresour Technol 242:265–271PubMedPubMedCentralCrossRefGoogle Scholar
  32. Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6(1):41CrossRefGoogle Scholar
  33. Kibblewhite RP, Bawden AD, Brindley CL (1995) TMP fibre and fines qualities of thirteen radiata pine wood types. Appita J 48(5):367–377Google Scholar
  34. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351PubMedCrossRefGoogle Scholar
  35. Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2(1):19PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kuhad RC, Gupta R, Khasa YP (2010a) Bioethanol production from lignocellulosic biomass: an overview. Teri Press, New DelhiGoogle Scholar
  37. Kuhad RC, Gupta R, Khasa YP, Singh A (2010b) Bioethanol production from Lantana camara (red sage): pretreatment, saccharification and fermentation. Bioresour Technol 101(21):8348–8354PubMedCrossRefGoogle Scholar
  38. Kuhad RC, Mehta G, Gupta R, Sharma KK (2010c) Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 34(8):1189–1194CrossRefGoogle Scholar
  39. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:10.  https://doi.org/10.4061/2011/280696. (Article ID 280696)CrossRefGoogle Scholar
  40. Lah TNT, Rahman NNN, Nama MB (2012) Cellulase activity and glucose production by Bacillus cereus monoculture and co-culture utilizing palm kernel cake (PKC) under solid state fermentation. In International conference on environment, energy and biotechnology, Singapore (Vol. 33, pp. 172–177)Google Scholar
  41. Le Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR et al (2009) Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci 106(38):16151–16156PubMedCrossRefGoogle Scholar
  42. Li YH, Ding M, Wang J, Xu GJ, Zhao F (2006) A novel thermo acidophilic endoglucanase, Ba-EGA, from a new cellulose-degrading bacterium, Bacillus sp. AC-1. Appl Microbiol Biotechnol 70(4):430–436PubMedCrossRefGoogle Scholar
  43. Liang Y, Feng Z, Yesuf J, Blackburn JW (2010) Optimization of growth medium and enzyme assay conditions for crude cellulases produced by a novel thermophilic and cellulolytic bacterium, Anoxybacillus sp. 527. Appl Biochem Biotechnol 160(6):1841–1852PubMedCrossRefGoogle Scholar
  44. Liu ZL, Li HN, Song HT, Xiao WJ, Xia WC, Liu XP, Jiang ZB (2018) Construction of a tri functional cellulase and expression in Saccharomyces cerevisiae using a fusion protein. BMC Biotechnol 18(43):01–07Google Scholar
  45. Marques NP, de Cassia Pereira J, Gomes E, da Silva R, Araújo AR, Ferreira H et al (2018) Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind Crop Prod 122:66–75CrossRefGoogle Scholar
  46. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE et al (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560Google Scholar
  47. Milala MA, Shugaba A, Gidado A, Ene AC, Wafar JA (2005) Studies on the use of agricultural wastes for cellulase enzyme production by Aspergillus niger. Res J Agric Biol Sci 1(4):325–328Google Scholar
  48. Mishra BK, Lata AP (2007) Lignocellulolytic enzyme production from submerged fermentation of paddy straw. Indian J Microbiol 47(2):176–179PubMedPubMedCentralCrossRefGoogle Scholar
  49. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686PubMedPubMedCentralCrossRefGoogle Scholar
  50. Nair AS, Al-Battashi H, Al-Akzawi A, Annamalai N, Gujarathi A, Al-Bahry S et al (2018) Waste office paper: A potential feedstock for cellulase production by a novel strain Bacillus velezensis ASN1. Waste Manag 79:491–500PubMedCrossRefGoogle Scholar
  51. Nataf Y, Bahari L, Raifer HL, Borovok I, Lamed R, Bayer EA, Sonenshein AL, Shoham Y (2010) Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. PNAS 43(107):18646–18651CrossRefGoogle Scholar
  52. Nizamudeen S, Bajaj BK (2009) A novel thermo-alkali tolerant endoglucanase production using cost-effective agricultural residues as substrates by a newly isolated Bacillus sp. NZ. Food Technol Biotechnol 47(4):435–440Google Scholar
  53. Oksanen J, Ahvenainen J, Home S (1985) Microbial cellulose for improving filterability of wort and beer. In Proceedings of the 20th European brewery chemistry congress, Helsinki, Finland, pp. 419–425Google Scholar
  54. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13(2-3):81–84CrossRefGoogle Scholar
  55. Patel MA, Ou MS, Ingram LO, Shanmugam KT (2005) Simultaneous saccharification and co fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Biotechnol Prog 21(5):1453–1460PubMedCrossRefGoogle Scholar
  56. Qadir F, Shariq M, Ahmed A, Sohail M (2018) Evaluation of a yeast co-culture for cellulase and xylanase production under solid state fermentation of sugarcane bagasse using multivariate approach. Ind Crop Prod 123:407–415CrossRefGoogle Scholar
  57. Rai P, Majumdar GC, Gupta SD, De S (2007) Effect of various pretreatment methods on permeate flux and quality during ultrafiltration of mosambi juice. J Food Eng 78(2):561–568CrossRefGoogle Scholar
  58. Reddy KV, Vijayalashmi T, Pabbati R, Maddela NR (2017) Characterization of some efficient cellulase producing bacteria isolated from pulp and paper mill effluent contaminated soil. Braz Arch Biol Technol 60:1–6Google Scholar
  59. Shajahan S, Moorthy IG, Sivakumar N, Selvakumar G (2017) Statistical modeling and optimization of cellulase production by Bacillus licheniformis NCIM 5556 isolated from the hot spring, Maharashtra, India. J King Saud Univ Sci 29(3):302–310CrossRefGoogle Scholar
  60. Sharyo M, Sakaguchi H, Ohishi M, Takahashi M, Kida K, Tamagawa H, et al (2002) U.S. Patent No. 6,468,391. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  61. Shrivastava B, Thakur S, Khasa YP, Gupte A, Puniya AK, Kuhad RC (2011) White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22(4):823–831PubMedCrossRefGoogle Scholar
  62. Singh A, Kuhad RC, Ward OP (2007) Industrial application of microbial cellulases. In: Lignocellulose biotechnoloy: future prospects. Anshan, Tunbridge Wells, pp 345–358Google Scholar
  63. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 46:541–549CrossRefGoogle Scholar
  64. Sreena CP, Sebastian D (2018) Augmented cellulase production by Bacillus subtilis strain MU S1 using different statistical experimental designs. J Genet Eng Biotechnol 16(1):9–16PubMedPubMedCentralCrossRefGoogle Scholar
  65. Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17:315–319PubMedCrossRefGoogle Scholar
  66. Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases-production, applications and challenges. J Sci Ind Res 64(11):832–844Google Scholar
  67. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11PubMedCrossRefGoogle Scholar
  68. Svensson B, Frandsen TP, Matsui I, Juge N, Fierobe HP, Stoffer B, Rodenburg KW (1995) Mutational analysis of catalytic mechanism and specificity in amylolytic enzymes. In: Petersen SB, Svensson B, Pedersen S (eds) Carbohydrate bioengineering. Elsevier, AmsterdamGoogle Scholar
  69. Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100(6):637–643PubMedPubMedCentralCrossRefGoogle Scholar
  70. Tejada M, Gonzalez JL, García-Martínez AM, Parrado J (2008) Application of a green manure and green manure composted with beet vinasse on soil restoration: effects on soil properties. Bioresour Technol 99(11):4949–4957PubMedCrossRefGoogle Scholar
  71. Templeton DW, Sluiter AD, Hayward TK, Hames BR, Thomas SR (2009) Assessing corn stover composition and sources of variability via NIRS. Cellulose 16:621–639CrossRefGoogle Scholar
  72. Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88–98PubMedCrossRefGoogle Scholar
  73. Zhang XZ, Zhang YHP (2013) Cellulases: characteristics, sources, production, and applications. In: Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers, vol 1. John Wiley & Sons, Inc., Hoboken, pp 131–146CrossRefGoogle Scholar
  74. Zhang X, Li Y, Zhao X, Bai F (2017) Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator. Bioresour Technol 223:317–322PubMedCrossRefGoogle Scholar
  75. Zhang F, Zhao X, Bai F (2018) Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresour Technol 247:676–683PubMedCrossRefGoogle Scholar
  76. Zhao C, Deng L, Fang H (2018) Mixed culture of recombinant Trichoderma reesei and Aspergillus niger for cellulase production to increase the cellulose degrading capability. Biomass Bioenergy 112:93–98CrossRefGoogle Scholar
  77. Zhonghai L, Guangshan Y, Ruimei W, Liwei G, Qinbiao K, Meng L, Piao Y, Guodong L, Yuqi Q, Xin S, Yaohua Z, Xu F, Yinbo Q (2015) Synergistic and dose-controlled regulation of cellulase gene expression in Penicillium oxalicum. PLoS Genet 11(9):e1005509CrossRefGoogle Scholar
  78. Zhuang J, Marchant MA, Nokes SE, Strobel HJ (2007) Economic analysis of cellulase production methods for bio-ethanol. Appl Eng Agric 23(5):679–687CrossRefGoogle Scholar
  79. Zou G, Shi S, Jiang Y, Brink JVD, Vries RPD, Chen L, Zhang J, Ma L, Wang C, Zhou Z (2012) Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering. Microb Cell Factories 11(21):01–12Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abhishek Dutt Tripathi
    • 1
  • Suresh Kumar Srivastava
    • 2
  • Kamlesh Kumar Maurya
    • 1
  • Sadhna Mishra
    • 1
  • Diksha Shaw
    • 1
  1. 1.Centre of Food Science and Technology, Institute of Agricultural Sciences, Banaras Hindu UniversityVaranasiIndia
  2. 2.School of Biochemical Engineering, Indian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations