Advertisement

Quantifying and Visualizing the Research Status of Social Media and Health Research Field

  • Xieling Chen
  • Tianyong Hao
Chapter

Abstract

This chapter presents a quantitative and visual analysis of social media and health research publications from Web of Science database during the year 2007–2017. The analysis is conducted using a bibliometric method, a social network analysis method, and a latent dirichlet allocation method to acquire the predominant subjects, journals, and countries, the collaboration relationship, and the major topics. Some interesting results are presented. For example, Journal of Medical Internet Research is the most influential journal. Public, Environmental & Occupational Health and Health Care Sciences & Services are the subjects with the most publications and citations, respectively. The USA is the most influential country with 1317 publications and an H-index of 53. Twenty topics are identified with potential themes as: Sex-related event, Analysis on medical-related content, Vaccine, Adverse drug reactions, Diet and weight control, Smoking cessation, Nursing, etc., which have received much more attention in scientific community during 2012–2017 compared with the period 2007–2011.

Keywords

Social media and health research Bibliometrics Social network analysis Latent Dirichlet Allocation 

Notes

Acknowledgements

The work is supported by grants from National Natural Science Foundation of China (No. 61772146) and Guangzhou Science Technology and Innovation Commission (No. 201803010063).

References

  1. 1.
    Gooden RJ, Winefield HR. Breast and prostate cancer online discussion boards: a thematic analysis of gender differences and similarities. J Health Psychol. 2007;12(1):103–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Kim S, Yoon J. The use of an online forum for health information by married Korean women in the United States. Inf Res. 2012;17(2):1.Google Scholar
  3. 3.
    Oh KM, Jun J, Zhao X, Kreps GL, Lee EE. Cancer information seeking behaviors of Korean American women: a mixed-methods study using surveys and focus group interviews. J Health Commun. 2015;20(10):1143–54.PubMedCrossRefGoogle Scholar
  4. 4.
    Lee SY, Hawkins R. Why do patients seek an alternative channel? The effects of unmet needs on patients’ health-related internet use. J Health Commun. 2010;15(2):152–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Fox S, Purcell K. Chronic disease and the internet. Washington, DC: Pew Internet & American Life Project; 2010.Google Scholar
  6. 6.
    Sinnenberg L, DiSilvestro CL, Mancheno C, Dailey K, Tufts C, Buttenheim AM, Asch DA. Twitter as a potential data source for cardiovascular disease research. JAMA Cardiol. 2016;1(9):1032–6.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Fu KW, Liang H, Saroha N, Tse ZTH, Ip P, Fung ICH. How people react to Zika virus outbreaks on Twitter? A computational content analysis. Am J Infect Control. 2016;44(12):1700–2.PubMedCrossRefGoogle Scholar
  8. 8.
    Xu X, Lin Q, Zhang Y, Zhu R, Sharma M, Zhao Y. Influence of WeChat on sleep quality among undergraduates in Chongqing, China: a cross-sectional study. Springerplus. 2016;5(1):2066.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Grumme VS, Gordon SC. Social media use by transplant recipients for support and healing. Comput Inform Nurs. 2016;34(12):570–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Arean PA, Hallgren KA, Jordan JT, Gazzaley A, Atkins DC, Heagerty PJ, Anguera JA. The use and effectiveness of mobile apps for depression: results from a fully remote clinical trial. J Med Internet Res. 2016;18(12):e330.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Huang YC, Lin YP, Saxton GD. Give me a like: how HIV/AIDS nonprofit organizations can engage their audience on Facebook. AIDS Educ Prev. 2016;28(6):539–56.PubMedCrossRefGoogle Scholar
  12. 12.
    Song J, Song TM, Seo DC, Jin JH. Data mining of web-based documents on social networking sites that included suicide-related words among Korean adolescents. J Adolesc Health. 2016;59(6):668–73.PubMedCrossRefGoogle Scholar
  13. 13.
    Duh MS, Cremieux P, Audenrode MV, Vekeman F, Karner P, Zhang H, Greenberg P. Can social media data lead to earlier detection of drug-related adverse events? Pharmacoepidemiol Drug Saf. 2016;25(12):1425–33.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Chen XL, Xie HR, Wang FL, Liu ZQ, Xu J, Hao TY. A bibliometric analysis of natural language processing in medical research. BMC Med Inform Decis Mak. 2018;18(Suppl 1):14.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Chen XL, Ding RY, Xu K, Wang S, Hao TY, Zhou Y. A bibliometric review of natural language processing empowered mobile computing. Wirel Commun Mob Comput. 2018;2018:1827074.Google Scholar
  16. 16.
    Chen XL, Weng H, Hao TY. A data-driven approach for discovering the recent research status of diabetes in China. Lect Notes Comput Sci. 2017;10594:89–101.CrossRefGoogle Scholar
  17. 17.
    Chen XL, Chen BY, Zhang CX, Hao TY. Discovering the recent research in natural language processing field based on a statistical approach. Lect Notes Comput Sci. 2017;10676:507–17.CrossRefGoogle Scholar
  18. 18.
    Chen XL, Hao JT, Chen JJ, Hua SS, Hao TY. A bibliometric analysis of the research trends of technology enhanced language learning. Lect Notes Comput Sci. 2018;11284:169–179.Google Scholar
  19. 19.
    Blei DM, Ng AY, Jordan MI. Latent Dirichlet Allocation. J Mach Learn Res. 2003;3:993–1022.Google Scholar
  20. 20.
    Wong ML, Chan RKW, Koh D, Tan HH, Lim FS, Emmanuel S, Bishop G. Premarital sexual intercourse among adolescents in an Asian country: multilevel ecological factors. Pediatrics. 2009;124(1):e44–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Ireland ME, Schwartz HA, Chen Q, Ungar LH, Albarracín D. Future-oriented tweets predict lower county-level HIV prevalence in the United States. Health Psychol. 2015;34(S):1252.CrossRefGoogle Scholar
  22. 22.
    Young SD, Harrell L, Jaganath D, Cohen AC, Shoptaw S. Feasibility of recruiting peer educators for an online social networking-based health intervention. Health Educ J. 2013;72(3):276–82.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Rus HM, Cameron LD. Health communication in social media: message features predicting user engagement on diabetes-related Facebook pages. Ann Behav Med. 2016;50(5):678–89.PubMedCrossRefGoogle Scholar
  24. 24.
    Stellefson M, Chaney B, Ochipa K, Chaney D, Haider Z, Hanik B, Bernhardt JM. YouTube as a source of chronic obstructive pulmonary disease patient education: a social media content analysis. Chron Respir Dis. 2014;11(2):61–71.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Himelboim I, Han JY. Cancer talk on Twitter: community structure and information sources in breast and prostate cancer social networks. J Health Commun. 2014;19(2):210–25.PubMedCrossRefGoogle Scholar
  26. 26.
    Lyles CR, López A, Pasick R, Sarkar U. “5 mins of Uncomfyness is better than Dealing with Cancer 4 a Lifetime”: an exploratory qualitative analysis of cervical and breast cancer screening dialogue on Twitter. J Cancer Educ. 2013;28(1):127–33.PubMedCrossRefGoogle Scholar
  27. 27.
    De la Torre-Díez I, Díaz-Pernas FJ, Antón-Rodríguez M. A content analysis of chronic diseases social groups on Facebook and Twitter. Telemed J E Health. 2012;18(6):404–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Bender JL, Wiljer D, To MJ, Bedard PL, Chung P, Jewett MA, Gospodarowicz M. Testicular cancer survivors’ supportive care needs and use of online support: a cross-sectional survey. Support Care Cancer. 2012;20(11):2737–46.PubMedCrossRefGoogle Scholar
  29. 29.
    Bender JL, Jimenez-Marroquin MC, Ferris LE, Katz J, Jadad AR. Online communities for breast cancer survivors: a review and analysis of their characteristics and levels of use. Support Care Cancer. 2013;21(5):1253–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Zanchetta MS, Cognet M, Lam-Kin-Teng MR, Dumitriu ME, Renaud L, Rhéaume J. From early detection to rehabilitation in the community: reading beyond the blog testimonies of survivors’ quality of life and prostate cancer representation. Health Qual Life Outcomes. 2016;14(1):171.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cartledge P, Miller M, Phillips B. The use of social-networking sites in medical education. Med Teach. 2013;35(10):847–57.PubMedCrossRefGoogle Scholar
  32. 32.
    Massey PM, Leader A, Yom-Tov E, Budenz A, Fisher K, Klassen AC. Applying multiple data collection tools to quantify human papillomavirus vaccine communication on Twitter. J Med Internet Res. 2016;18(12):e318.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lei Y, Pereira JA, Quach S, Bettinger JA, Kwong JC, Corace K, Garber G, Feinberg Y, Guay M, Public Health Agency of Canada/Canadian Institutes of Health Research Influenza Research Network (PCIRN) Program Delivery and Evaluation Group. Examining perceptions about mandatory influenza vaccination of healthcare workers through online comments on news stories. PLoS One. 2015;10(6):e0129993.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Liu J, Zhao S, Zhang X. An ensemble method for extracting adverse drug events from social media. Artif Intell Med. 2016;70:62–76.PubMedCrossRefGoogle Scholar
  35. 35.
    Sarker A, Gonzalez G. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. J Biomed Inform. 2015;53:196–207.PubMedCrossRefGoogle Scholar
  36. 36.
    Taewijit S, Theeramunkong T, Ikeda M. Distant supervision with transductive learning for adverse drug reaction identification from electronic medical records. J Healthc Eng. 2017;2017:7575280.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Vidal L, Ares G, Machín L, Jaeger SR. Using Twitter data for food-related consumer research: a case study on “What People Say When Tweeting about Different Eating Situations”. Food Qual Prefer. 2015;45:58–69.CrossRefGoogle Scholar
  38. 38.
    Chou WYS, Prestin A, Kunath S. Obesity in social media: a mixed methods analysis. Transl Behav Med. 2014;4(3):314–23.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Turner-McGrievy GM, Beets MW. Tweet for health: using an online social network to examine temporal trends in weight loss-related posts. Transl Behav Med. 2015;5(2):160–6.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Stragier J, Abeele MV, Mechant P, De Marez L. Understanding persistence in the use of online fitness communities: comparing novice and experienced users. Comput Hum Behav. 2016;64:34–42.CrossRefGoogle Scholar
  41. 41.
    Deliens T, Clarys P, De Bourdeaudhuij I, Deforche B. Determinants of eating behaviour in university students: a qualitative study using focus group discussions. BMC Public Health. 2014;14(1):53.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    So J, Prestin A, Lee L, Wang Y, Yen J, Chou WYS. What do people like to “share” about obesity? A content analysis of frequent Retweets about obesity on Twitter. Health Commun. 2016;31(2):193–206.PubMedCrossRefGoogle Scholar
  43. 43.
    Jane M, Foster J, Hagger M, Pal S. Using new technologies to promote weight management: a randomised controlled trial study protocol. BMC Public Health. 2015;15(1):509.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Neri AJ, Momin BR, Thompson TD, Kahende J, Zhang L, Puckett MC, Stewart SL. Use and effectiveness of quitlines versus web-based tobacco cessation interventions among 4 state tobacco control programs. Cancer. 2016;122(7):1126–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Ramo DE, Thrul J, Chavez K, Delucchi KL, Prochaska JJ. Feasibility and quit rates of the tobacco status project: a Facebook smoking cessation intervention for young adults. J Med Internet Res. 2015;17(12):e291.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Myneni S, Fujimoto K, Cobb N, Cohen T. Content-driven analysis of an online community for smoking cessation: integration of qualitative techniques, automated text analysis, and affiliation networks. J Inf Secur. 2015;105(6):1206–12.Google Scholar
  47. 47.
    Frandsen M, Walters J, Ferguson SG. Exploring the viability of using online social media advertising as a recruitment method for smoking cessation clinical trials. Nicotine Tob Res. 2013;16(2):247–51.PubMedCrossRefGoogle Scholar
  48. 48.
    Romito LM, Hurwich RA, Eckert GJ. A snapshot of the depiction of electronic cigarettes in YouTube videos. Am J Health Behav. 2015;39(6):823–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Cole-Lewis H, Pugatch J, Sanders A, Varghese A, Posada S, Yun C, Augustson E. Social listening: a content analysis of e-cigarette discussions on Twitter. J Med Internet Res. 2015;17(10):e243.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Clark EM, Jones CA, Williams JR, Kurti AN, Norotsky MC, Danforth CM, Dodds PS. Vaporous marketing: uncovering pervasive electronic cigarette advertisements on Twitter. PLoS One. 2016;11(7):e0157304.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Youn SJ, Trinh NH, Shyu I, Chang T, Fava M, Kvedar J, Yeung A. Using online social media, Facebook, in screening for major depressive disorder among college students. Int J Clin Health Psychol. 2013;13(1):74–80.CrossRefGoogle Scholar
  52. 52.
    Block M, Stern DB, Raman K, Lee S, Carey J, Humphreys AA, Blood AJ. The relationship between self-report of depression and media usage. Front Hum Neurosci. 2014;8:712.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    McDougall MA, Walsh M, Wattier K, Knigge R, Miller L, Stevermer M, Fogas BS. The effect of social networking sites on the relationship between perceived social support and depression. Psychiatry Res. 2016;246:223–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Green J, Wyllie A, Jackson D. Social networking for nurse education: possibilities, perils and pitfalls. Contemp Nurse. 2014;47(1–2):180–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Richardson J, Grose J, Nelmes P, Parra G, Linares M. Tweet if you want to be sustainable: a thematic analysis of a Twitter chat to discuss sustainability in nurse education. J Adv Nurs. 2016;72(5):1086–96.PubMedCrossRefGoogle Scholar
  56. 56.
    Isaacson K, Looman WS. Strategies for developing family nursing communities of practice through social media. J Fam Nurs. 2017;23(1):73–89.PubMedCrossRefGoogle Scholar
  57. 57.
    Ashton KS. Teaching nursing students about terminating professional relationships, boundaries, and social media. Nurse Educ Today. 2016;37:170–2.PubMedCrossRefGoogle Scholar
  58. 58.
    Smith GC, Knudson TK. Student nurses’ unethical behavior, social media, and year of birth. Nurs Ethics. 2016;23(8):910–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Kim M, Choi M, Youm Y. Semantic network analysis of online news and social media text related to comprehensive nursing care service. J Korean Acad Nurs. 2017;47(6):806–16.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xieling Chen
    • 1
  • Tianyong Hao
    • 2
  1. 1.School of EconomicsJinan UniversityGuangzhouChina
  2. 2.School of Computer ScienceSouth China Normal UniversityGuangzhouChina

Personalised recommendations