Advertisement

The Present Status of Evolution Education

  • Ute HarmsEmail author
  • Michael J. Reiss
Chapter

Abstract

Evolution is widely seen as the central, key, unifying framework of biology. Yet many school-aged students and adults understand relatively little of the theory of evolution, for a whole range of reasons ranging from the cognitive difficulty of some of the central concepts to rejection of certain key ideas, whether consciously or unconsciously. Prior to this volume, there have been surprisingly few studies of research-based interventions that attempt to use existing knowledge to propose new pedagogies to try to teach evolution to learners more successfully, whether in schools or elsewhere. Successful learning here might be understood as cognitive gains about evolution, as acceptance of evolution or as an increased desire to continue to learn about it. In this chapter, we review the existing field of evolution education, discussing the reasons why such understanding is limited, whether for cognitive, socio-cultural or affective reasons (Jones & Reiss in Teaching about scientific origins: Taking account of creationism. Peter Lang, New York, 2007; Rosengren et al. in Evolution challenges integrating research and practice in teaching and learning about evolution. Oxford University Press, Oxford, 2012; Kampourakis in Understanding evolution. Cambridge University Press, Cambridge, 2014; Tracy, Hart and Martens in PLoS ONE, 6(3): e17349, 2011; Newall in School Science Review, 99(3670): 61–66, 2017).

Keywords

Evolution education Science education research Biology education 

References

  1. Abraham, J. K., Meir, E., Perry, J., Herron, J. C., Maruca, S., & Stal, D. (2009). Addressing Undergraduate Student Misconceptions about Natural Selection with an Interactive Simulated Laboratory. Evolution: Education & Outreach, 2, 393–404.  https://doi.org/10.1007/s12052-009-0142-3.Google Scholar
  2. Akyol, G., Tekkaya, C., Sungur, S., & Traynor, A. (2012). Modeling the interrelationships among pre-service science teachers’ understanding and acceptance of evolution, their views on nature of science and self-efficacy beliefs regarding teaching evolution. Journal of Science Teacher Education, 23(8), 937–957.CrossRefGoogle Scholar
  3. Alters, B. J. (2005). Teaching Biological Evolution in Higher Education. Methodological, Religious, and Nonreligious Issues. Sudbury, MA: Jones and Barlett Publishers.Google Scholar
  4. Alters, B. J., & Nelson C. E. (2002). Perspective: Teaching evolution in higher education. Evolution: International Journal of Organic Evolution, 56(10), 1891–1901.Google Scholar
  5. American Association for the Advancement of Science (AAAS) (2006). Evolution on the front line: An abbreviated guide for teaching evolution (Project 2061). Received from http://www.project2061.org/publications/guides/evolution.pdf.
  6. Anderson, D. L., Fisher, K. M., & Norman, G. J. (2002). Development and evaluation of the conceptual inventory of natural selection. Journal of Research in Science Teaching, 39(10), 952–978.CrossRefGoogle Scholar
  7. Andersson, B., & Wallin, A. (2006). On developing content-oriented theories taking biological evolution as an example. International Journal of Science Education, 28(6), 673–695.  https://doi.org/10.1080/09500690500498385.CrossRefGoogle Scholar
  8. Andrews, T. M., Kalinowski, S. T., & Leonard, M. J. (2011). “Are humans evolving?” A classroom discussion to change student misconceptions regarding natural selection. Evolution: Education & Outreach, 4, 456–466.  https://doi.org/10.1007/s12052-011-0343-4.Google Scholar
  9. Athanasiou, K., & Papadopoulou, P. (2012). Conceptual ecology of the evolution acceptance among Greek education students: Knowledge, religious practices and social influences. International Journal of Science Education, 34(6), 903–924.  https://doi.org/10.1080/09500693.2011.586072.CrossRefGoogle Scholar
  10. Baalmann, W., Frerichs, V., Weitzel, H., Gropengießer, H., & Kattmann, U. (2004). Schülervorstellungen zu Prozessen der Anpassung: Ergebnisse einer Interviewstudie im Rahmen der Didaktischen Rekonstruktion. Zeitschrift für Didaktik der Naturwissenschaften, 10(1), 7–28.Google Scholar
  11. Bardapurkar, A. (2008). Do students see the “selection” in organic evolution? A critical review of the causal structure of student explanations. Evolution: Education and Outreach, 1(3), 299–305.  https://doi.org/10.1007/s12052-008-0048-5.Google Scholar
  12. Baum, D. A., DeWitt-Smith, S., & Donovan, S. S. S. (2005). The tree-thinking challenge. Science, 310(5750), 979–980.  https://doi.org/10.1126/science.1117727.CrossRefGoogle Scholar
  13. Beardsley, P. M. (2004). Middle school student learning in evolution: Are current standards achievable? The American Biology Teacher, 66(9), 604–612.  https://doi.org/10.2307/4451757.CrossRefGoogle Scholar
  14. Beggrow, E. P., & Nehm, R. H. (2012). Students’ mental models of evolutionary causation: Natural selection and genetic drift. Evolution: Education & Outreach, 5, 429–444.  https://doi.org/10.1007/s12052-012-0432-z.Google Scholar
  15. Berti, A. E., Toneatti, L., & Rosati, V. (2010). Children’s conceptions about the origin of species: A study of Italian children’s conceptions with and without instruction. Journal of the Learning Sciences, 19(4), 506–538.CrossRefGoogle Scholar
  16. Bishop, B. A., & Anderson, C. W. (1990). Student conceptions of natural selection and its role in evolution. Journal of Research in Science Teaching, 27(5), 415–427.CrossRefGoogle Scholar
  17. Bizzo, N. M. V. (1994). From down house landlord to Brazilian high school students: what has happened to evolutionary knowledge on the way? Journal of Research in Science Teaching, 31(5), 537–556.  https://doi.org/10.1002/tea.3660310508.CrossRefGoogle Scholar
  18. Brumby, M. N. (1979). Problems in learning the concept of natural selection. Journal of Biological Education, 13(2), 119–122.CrossRefGoogle Scholar
  19. Brumby, M. N. (1981). The use of problem-solving in meaningful learning in biology. Research in Science Education, 11(1), 103–110.  https://doi.org/10.1007/BF02356773.CrossRefGoogle Scholar
  20. Brumby, M. N. (1984). Misconceptions about the concept of natural selection by medical biology students. Science Education, 68, 493–503.  https://doi.org/10.1002/sce.3730680412.CrossRefGoogle Scholar
  21. Campbell, N. A., & Reece, J. B. (2006). Biologie (6. Auflage). München: Pearson Education (p. 513). Deutschland.Google Scholar
  22. Campos, R., & Sá‐Pinto, A. (2014). Erratum: Early evolution of evolutionary thinking: teaching biological evolution in elementary schools. Evolution: Education & Outreach, 7.  https://doi.org/10.1186/s12052-014-0005-4.
  23. Catley, K. M., Lehrer, R., & Reiser, B. (2005). Tracing a prospective learning progression for developing understanding of evolution. Paper commissioned by National Academies Committee on Test Design for K-12 Science Achievement.Google Scholar
  24. Catley, K. M., & Novick, L. R. (2009). Digging deep: Exploring college students’ knowledge of macroevolutionary time. Journal of Research in Science Teaching, 46(3), 311–332.  https://doi.org/10.1002/tea.20273.CrossRefGoogle Scholar
  25. Catley, K. M., Phillips, B. C., & Novick, L. R. (2013). Snakes and eels and dogs! Oh, my! Evaluating high school students’ tree-thinking skills: An entry point to understanding evolution. Research in Science Education, 43, 2327–2348.  https://doi.org/10.1007/s11165-013-9359-9.CrossRefGoogle Scholar
  26. Chi, M., Kristensen, A., & Roscoe, R. (2012). Misunderstanding emergent causal mechanism in natural selection. In S. Rosengren, S. Brem, & G. Sinatra (Eds.), Evolution challengens: Integrating research and practice in teaching and learning about evolution (pp. 145–173). New York: Oxford University Press.CrossRefGoogle Scholar
  27. Deadman, J., & Kelly, P. (1978). What do secondary school boys understand about evolution and heredity before they are taught the topics? Journal of Biological Education, 12(1), 7–15.  https://doi.org/10.1080/00219266.1978.9654169.CrossRefGoogle Scholar
  28. Demastes, S. S., Settlage, J., & Good, R. (1995). Students’ conceptions of natural selection and its role in evolution: Cases of replication and comparison. Journal of Research in Science Teaching, 32(5), 535–550.  https://doi.org/10.1002/tea.3660320509.CrossRefGoogle Scholar
  29. Deniz, H., Donnelly, L. A., & Yilmaz, I. (2008). Exploring the factors related to acceptance of evolutionary theory among Turkish preservice biology teachers: Toward a more informative conceptual ecology for biological evolution. Journal of Research in Science Teaching, 45(4), 420–443.  https://doi.org/10.1002/tea.20223.CrossRefGoogle Scholar
  30. Department for Education [DfE]. (2014). National Curriculum. Available at https://www.gov.uk/government/collections/national-curriculum.
  31. Engel Clough, E., & Wood-Robinson, C. (1985). How Secondary Students Interpret Instances of Biological Adaptation. Journal of Biology Education, 19(2), 125–130.  https://doi.org/10.1080/00219266.1985.9654708.CrossRefGoogle Scholar
  32. Evans, E. M. (2000). The emergence of beliefs about the origins of species in school-age children. Merrill-Palmer Quarterly: A Journal of Developmental Psychology, 46(2), 221–254.Google Scholar
  33. Evans, E. M., Szymanowski, K., Smith, P. H., & Rosengren, K. S. (2005). Overcoming an essentialist bias: From metamorphosis to evolution. Atlanta, GA: In Biennial meeting of the Society for Research in Child Development.Google Scholar
  34. Evans, E. M., Spiegel, A. N., Gram, W., Frazier, B. N., Tare, M., Thompson, S., et al. (2010). A conceptual Guide to Natural History Museum Visitors’ Understanding of Evolution. Journal of Research in Science Teaching, 47(3), 326–353.Google Scholar
  35. Ferrari, M., & Chi, M. T. H. (1998). The nature of naive explanations of natural selection. International Journal of Science Education, 20(10), 1231–1256.CrossRefGoogle Scholar
  36. Fiedler, D., Tröbst, S., & Harms, U. (2017). University students’ conceptual knowledge of randomness and probability in the context of evolution and mathematics. CBE-Life Sciences Education (LSE), 16(2), 1–16, ar38.  https://doi.org/10.1187/cbe.16-07-0230.CrossRefGoogle Scholar
  37. Flanagan, J. C., & Roseman, J. E. (2011). Assessing middle and high school students’ understanding of evolution with standards-based items. In Annual Conference of the National Association for Research in Science Teaching. Orlando, FL.Google Scholar
  38. Garvin-Doxas, K., & Klymkowsky, M. W. (2008). Understanding randomness and its impact on student learning: Lessons learned from building the Biology Concept Inventory (BCI). CBE – Life Science Education, 7, 227–233.  https://doi.org/10.1187/cbe.07-08-0063.CrossRefGoogle Scholar
  39. Gelman, S. A. (2004). Psychological essentialism in children. Trends in Cognitive Science, 8(9), 404–409.  https://doi.org/10.1016/j.tics.2004.07.001.CrossRefGoogle Scholar
  40. Gould, S. J. (1992). Die Entdeckung der Tiefenzeit: Zeitpfeil und Zeitzyklus in der Geschichte unserer Erde (p. 15). München: Carl Hanser.Google Scholar
  41. Graf, D., & Hamdorf, E. (2011). Evolution: Verbreitete Fehlvorstellungen zu einem zentralen Thema In D. Dreesmann, D. Graf & K. Witte (Hrsg.), Evolutionsbiologie: Moderne Themen für den Unterricht (S. 32). Heidelberg: Springer AkademischerVerlag.Google Scholar
  42. Graf, D., & Soran, H. (2011). Einstellung und Wissen von Lehramtsstudierenden zur Evolution – ein Vergleich zwischen Deutschland und der Türkei. In D. Graf (Ed.), Evolutionstheorie – Akzeptanz und Vermittlung im europäischen Vergleich (pp. 141–162). Berlin: Springer.CrossRefGoogle Scholar
  43. Grant, B. W. (2009). Practitioner research improved my students’ understanding of evolution by natural selection in an introductory biology course. Teaching issues and experiments in ecology, Vol. 6: Research #4. Retrieved from http://tiee.ecoed.net/vol/v6/research/grant/.
  44. Greene, E. D. (1990). The logic of university students’ misunderstanding of natural selection. Journal of Research in Science Teaching, 27(9), 875–885.  https://doi.org/10.1002/tea.3660270907.CrossRefGoogle Scholar
  45. Gregory, T. R. (2008). Understanding evolutionary trees. Evolution: Education & Outreach, 1(2), 121–137.  https://doi.org/10.1007/s12052-008-0035-x.Google Scholar
  46. Gregory, T. R. (2009). Understanding natural selection: Essential concepts and common misconceptions. Evolution: Education & Outreach, 2,156–175.  https://doi.org/10.1007/s12052-009-0128-1.Google Scholar
  47. Großschedl, J., Konnemann, C., & Basel, N. (2014). Pre-service biology teachers’ acceptance of evolutionary theory and their preference for its teaching. Evolution: Education and Outreach, 7(18), 1–16.  https://doi.org/10.1186/s12052-014-0018-z.
  48. Ha, M., Haury, D. L., & Nehm, R. H. (2012). Feeling of certainty: Uncovering a missing link between knowledge and acceptance of evolution. Journal of Research in Science Teaching, 49(1), 95–121.  https://doi.org/10.1002/tea.20449.CrossRefGoogle Scholar
  49. Halldén, O. (1988). The evolution of the species: pupil perspectives and school perspectives. International Journal of Science Education, 10(5), 541–552.  https://doi.org/10.1080/0950069880100507.CrossRefGoogle Scholar
  50. Harms, U., Mayer, J., Hammann, M., Bayrhuber, H., & Kattmann, U. (2004). Kerncurriculum und Standards für den Biologieunterricht in der gymnasialen Oberstufe. In H.-E. Tenorth (Hrsg.), Biologie, Chemie, Physik, Geschichte, Politik. Expertisen – im Auftrag der KMK (S. 22–84). Weinheim: Beltz.Google Scholar
  51. Illner, R. (2000). Einfluss religiöser Schülervorstellungen auf die Akzeptanz der Evolutionstheorie (Dissertation). Universität Oldenburg. Abgerufen von http://oops.uni-oldenburg.de/388/1/421.pdf.
  52. Jensen, M. S., & Finley, F. N. (1995). Teaching evolution using historical arguments in a conceptual change strategy. Science Education, 79(2), 147–166.  https://doi.org/10.1002/sce.3730790203.CrossRefGoogle Scholar
  53. Jensen, M. S., & Finley, F. N. (1996). Changes in students’ understanding of evolution resulting from different curricular and instructional strategies. Journal of Research in Science Teaching, 33(8), 879–900.  https://doi.org/10.1002/(SICI)1098-2736(199610)33:8%3c879:AID-TEA4%3e3.0.CO;2-T.CrossRefGoogle Scholar
  54. Jimenez-Aleixandre, M. P. (1992). Thinking about theories or thinking with theories?: A classroom study with natural selection. International Journal of Science Education, 14(1), 51–61.  https://doi.org/10.1080/0950069920140106.CrossRefGoogle Scholar
  55. Jiménez-Aleixandre, M. P., & Fernández-Pérez, J. (1987). Selection or adjustment? Explanations of university biology students for natural selection problems. In J. D. Novak (Ed.), Proceedings of the Second International Seminar on Misconceptions and Educational Strategies in Science and Mathematics (vol. II, pp. 224–232). Ithaca, NY: Department of Education, Cornell University.Google Scholar
  56. Johannsen, M., & Krüger, D. (2005). Schülervorstellungen zur Evolution - eine quantitative Studie. Berichte des Instituts für Didaktik der Biologie, 14, 23–48.Google Scholar
  57. Jones, L., & Reiss, M. J. (Eds.). (2007). Teaching about scientific origins: Taking account of creationism. New York: Peter Lang.Google Scholar
  58. Jungwirth, E. (1975). The problem of teleology in biology as a problem of biology-teacher education. Journal of Biological Education, 9(6), 243–246.  https://doi.org/10.1080/00219266.1975.9654037.CrossRefGoogle Scholar
  59. Kalinowski, S. T., Leonard, M. J., & Andrews, T. M. (2010). Nothing in evolution makes sense except in the light of DNA. CBE—Life Sciences Education, 9, 87–97.  https://doi.org/10.1187/cbe.09-12-0088.CrossRefGoogle Scholar
  60. Kampourakis, K. (2014). Understanding evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  61. Kampourakis, K., Pavlidi, V., Papadopoulou, M., & Palaiokrassa, E. (2012). Children’s teleological intuitions: What kind of explanations do 7–8 year olds give for the features of organisms, artefacts and natural objects? Research of Science Education, 42(4), 651–671.  https://doi.org/10.1007/s11165-011-9219-4.CrossRefGoogle Scholar
  62. Kampourakis, K., & Zogza, V. (2008). Students’ intuitive explanations of the causes of homologies and adaptations. Science & Education, 17(1), 27–47.  https://doi.org/10.1007/s11191-007-9075-9.CrossRefGoogle Scholar
  63. Kampourakis, K., & Zogza, V. (2009). Preliminary evolutionary explanations: A basic framework for conceptual change and explanatory coherence. Science & Education, 18(10), 1313–1340.  https://doi.org/10.1007/s11191-008-9171-5.CrossRefGoogle Scholar
  64. Kattmann, U. (1995). Konzeption eines naturgeschichtlichen Biologieunterrichts: Wie Evolution Sinn macht. Zeitschrift für Didaktik der Naturwissenschaften, 1, 29–42.Google Scholar
  65. Kattmann, U. (2005). Lernen mit anthropomorphen Vorstellungen? - Ergebnisse von Untersuchungen zur Didaktischen Rekonstruktion in der Biologie. Zeitschrift für Didaktik der Naturwissenschaften, 11, 165–174.Google Scholar
  66. Kattmann, U., Duit, R., Gropengießer, H., & Komorek, M. (1997). Das Modell der Didaktischen Rekonstruktion. Zeitschrift für Didaktik der Naturwissenschaft, 3(3), 3–18.Google Scholar
  67. Kutschera, U. (2006). Evolutionsbiologie (2nd ed.). Stuttgart: Ulmer.Google Scholar
  68. Lammert, N. (2012). Akzeptanz, Vorstellungen und Wissen von Schülerinnen und Schülern der Sekundarstufe I zu Evolution und Wissenschaft (Dissertation). Technische Universität Dortmund. Aufgerufen von https://eldorado.tu-dortmund.de/bitstream/2003/29476/1/Dissertation_Lammert.pdf.
  69. Losh, S. C., & Nzekwe, B. (2011). The foundations: How education major influences basic science knowledge and pseudoscience beliefs. In Atlanta Conference on Science and Innovation Policy (pp. 1–16). IEEE. https://smartech.gatech.edu/bitstream/handle/1853//421-1500-2-PB.pdf Gesehen 21.07.2015.
  70. MacFadden, B. J., Dunckel, B. A., Ellis, S., Dierking, L. D., Abraham-Silver, L., Kisiel, J., et al. (2007). Natural history museum visitors’ understanding of evolution. BioScience, 57(10), 875–882.CrossRefGoogle Scholar
  71. Mayr, E. (1982). The growth of biological thought: Diversity, Evolution, and Inheritance. Cambridge: Harvard University Press.Google Scholar
  72. McVaugh, N. K., Birchfield, J., Lucero, M. M., & Petrosino, A. J. (2011). Evolution education: Seeing the forest for the trees and focusing our efforts on the teaching of evolution. Evolution: Education & Outreach, 4, 286–292.  https://doi.org/10.1007/s12052-010-0297-y.Google Scholar
  73. Meikle, W. E., & Scott, E. C. (2010). Why are there still monkeys? Evolution: Education & Outreach, 3, 573–575.  https://doi.org/10.1007/s12052-010-0293-2.Google Scholar
  74. Meir, E., Perry, J., Herron, J. C., & Kingsolver, J. (2007). College students’ misconceptions about evolutionary trees. The American Biology Teacher, 69(7), 71–76.  https://doi.org/10.1662/0002-7685(2007)69%5b71:CSMAET%5d2.0.CO;2.CrossRefGoogle Scholar
  75. Meyer, J. H. F., & Land, R. (2005). Threshold concepts and troublesome knowledge (2): Epistemological considerations and a conceptual framework for teaching and learning. Higher Education, 49(3), 373–388.  https://doi.org/10.1007/s10734-004-6779-5.CrossRefGoogle Scholar
  76. Meyer, J. H., & Land, R. (2006). Threshold concepts and troublesome knowledge: An introduction. In J. H. Meyer & R. Land (Eds.), Overcoming barriers to student understanding: Threshold concepts and troublesome knowledge (pp. 3–18). Abington, United Kingdom: Routledge.CrossRefGoogle Scholar
  77. Miller, J. D., Scott, E. C., & Okamoto, S. (2006). Public acceptance of evolution. Science-New York then Washington-, 313(5788), 765.CrossRefGoogle Scholar
  78. Monod, J. (1997). On the molecular theory of evolution. In M. Ridley (Ed.), evolution (p. 390). Oxforf: Oxford University Press.Google Scholar
  79. Nadelson, L., Culp, R., Bunn, S., Burkhart, R., Shetlar, R., Nixon, K., & Waldron, J. (2009). Teaching evolution concepts to early elementary school students. Evolution: Education and Outreach, 2(3), 458–473.  https://doi.org/10.1007/s12052-009-0148-x.Google Scholar
  80. Nehm, R. H., Beggrow, E. P., Opfer, J. E., & Ha, M. (2012). Reasoning about natural selection: Diagnosing contextual competency using the ACORNS instrument. The American Biology Teacher, 74(2), 92–98.  https://doi.org/10.1525/abt.2012.74.2.6.CrossRefGoogle Scholar
  81. Nehm, R. H., & Ha, M. (2011). Item feature effects in evolution assessment. Journal of Research in Science Teaching, 48(3), 237–256.CrossRefGoogle Scholar
  82. Nehm, R. H., Poole, T. M., Lyford, M. E., Hoskins, S. G., Carruth, L., Ewers, B. E., & Colberg, P. J. S. (2009). Does the segregation of evolution in biology textbooks and introductory courses reinforce students’ faulty mental models of biology and evolution? Evolution: Educations and Outreach, 2, 527–532.  https://doi.org/10.1007/s12052-008-0100-5.Google Scholar
  83. Nehm, R. H., Rector, M. A., & Ha, M. (2010). “Force-Talk” in evolutionary explanation: Metaphors and misconceptions. Evolution: Education and Outreach, 3, 605–613.  https://doi.org/10.1007/s12052-010-0282-5.Google Scholar
  84. Nehm, R. H., & Reilly, R. (2007). Biology majors’ knowledge and misconceptions of natural selection. BioScience, 57(3), 263–272.CrossRefGoogle Scholar
  85. Nehm, R. H., & Schonfeld, I. S. (2007). Does increasing biology teacher knowledge of evolution and the nature of science lead to greater preference for the teaching of evolution in schools? Journal of Science and Teacher Education, 18, 699–723.  https://doi.org/10.1007/s10972-007-9062-7.CrossRefGoogle Scholar
  86. Nehm, R. H., & Schonfeld, I. S. (2008). Measuring knowledge of natural selection: A comparison of the CINS, an open-response instrument, and an oral interview. Journal of Research in Science Teaching, 45(8), 1131–1160.  https://doi.org/10.1002/tea.20251.CrossRefGoogle Scholar
  87. Nehm, R. H., Schonfeld, I., & The, S. (2010b). Future of natural selection knowledge measurement: a reply to Anderson. Journal of Research in Science Teaching, 47, 358–362.  https://doi.org/10.1002/tea.20330.CrossRefGoogle Scholar
  88. Neubrand, C., & Harms, U. (2017). Tackling the difficulties in learning evolution: Effects of adaptive self-explanation prompts. Journal of Biological Education, 51(4), 336–348.  https://doi.org/10.1080/00219266.2016.1233129.CrossRefGoogle Scholar
  89. Newall, E. (2017). Evolution, insight and truth? School Science Review, 99(367), 61–66.Google Scholar
  90. NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.Google Scholar
  91. Niebert, K., & Gropengießer, H. (2015). Understanding starts in the Mesocosm: Conceptual metaphor as a framework for external representations in science teaching. International Journal of Science Education, 37(5–6), 903–933.  https://doi.org/10.1080/09500693.2015.1025310.CrossRefGoogle Scholar
  92. Novick, L. R., & Catley, K. M. (2006). Interpreting hierarchical structure: Evidence from cladograms in biology. In D. Barker-Plummer, R. Cox & N. Swoboda (Eds.), Diagrammatic Representation and Inference. Diagrams 2006. Lecture Notes in Computer Science (vol. 4045, pp. 176–180). Berlin Heidelberg: Springer.Google Scholar
  93. Novick, L. R., Schreiber, E. G., & Catley, K. M. (2014). Deconstructing evolution education: The relationship between micro- and macro evolution. Journal of Research in Science Teaching, 51(6), 759–788.  https://doi.org/10.1002/tea.21161.CrossRefGoogle Scholar
  94. Opfer, J. E., Nehm, R. H., & Ha, M. (2012). Cognitive foundations for science assessment design: Knowing what students know about evolution. Journal of Research in Science Teaching, 49(6), 744–777.  https://doi.org/10.1002/tea.21028.CrossRefGoogle Scholar
  95. Pedersen, S., & Halldén, O. (1994). Intuitive ideas and scientific explanations as parts of students’ developing understanding of biology: the case of evolution. European Journal of Psychology of Education, 9, 127–137.  https://doi.org/10.1007/BF03173548.CrossRefGoogle Scholar
  96. Phillips, B. C., Novick, L. R., Catley, K. M., & Funk, D. J. (2012). Teaching tree thinking to college students: It’s not as easy as you think. Evolution: Education & Outreach, 5, 595–602.  https://doi.org/10.1007/s12052-012-0455-5.Google Scholar
  97. Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227.CrossRefGoogle Scholar
  98. Prinou, L., Halkia, L., & Skordoulis, C. (2008). What conceptions do Greek school students form about biological evolution? Evolution: Education and Outreach, 1(3), 312–317.  https://doi.org/10.1007/s12052-008-0051-x.Google Scholar
  99. Rector, M. A., Nehm, R. H., & Pearl, D. (2013). Learning the language of evolution: Lexical ambiguity and word meaning in student explanations. Research in Science Education, 43(3), 1107–1133.  https://doi.org/10.1007/s11165-012-9296-z.CrossRefGoogle Scholar
  100. Reiss, M. J. (2011). How should creationism and intelligent design be dealt with in the classroom? Journal of Philosophy of Education, 45, 399–415.CrossRefGoogle Scholar
  101. Robbins, J. R., & Roy, P. (2007). The natural selection: Identifying and correcting non-science student preconceptions through an inquiry-based, critical approach to evolution. The American Biology Teacher, 69(8), 460–466.CrossRefGoogle Scholar
  102. Robson, R. L., & Burns, S. (2011). Gain in student understanding of the role of random variation in evolution following teaching intervention based on Luria-Delbruck Experiment. Journal of Microbiology and Biology Education, 12(1), 3–7.  https://doi.org/10.1128/jmbe.v12i1.272.CrossRefGoogle Scholar
  103. Rosengren, K. L., Brem, S. K., Evans, E. M., & Sinatra, G. M. (Eds.). (2012). Evolution challenges integrating research and practice in teaching and learning about evolution. Oxford: Oxford University Press.Google Scholar
  104. Ross, P. M., Taylor, C. E., Hudges, C., Kofod, N., Whitaker, N., Lutze-Mann, Kofod M., & Tzioumis, V. (2010). Threshold concepts in learning biology and evolution. Biology International, 47–52.Google Scholar
  105. Rutledge, M. L., & Warden, M. A. (2000). Evolutionary theory, the Nature of Science & high school biology teachers: critical relationships. The American Biology Teacher, 62(1), 23–31.  https://doi.org/10.1662/0002-7685(2000)062%5b0023:ETTNOS%5d2.0.CO;2.CrossRefGoogle Scholar
  106. Samarapungavan, A., & Wiers, R. W. (1997). Children’s thoughts on the origin of species: A study of explanatory coherence. Cognitive Science, 21(2), 147–177.CrossRefGoogle Scholar
  107. Secretariat of the standing conference of the ministers of education and cultural affairs of the länder in the Federal Republic of Germany [KMK], 2005.Google Scholar
  108. Settlage, J. (1994). Conceptions of natural selection: A snapshot of the sensemaking process. Journal of Research in Science Teaching, 31(5), 449–457.  https://doi.org/10.1002/tea.3660310503.CrossRefGoogle Scholar
  109. Shtulman, A. (2006). Qualitative differences between naïve and scientific theories of evolution. Cognitive Psychology, 52(2), 170–194.  https://doi.org/10.1016/j.cogpsych.2005.10.001.CrossRefGoogle Scholar
  110. Sinatra, G. M., Brem, S. K., & Evans, E. M. (2008). Changing minds? Implications of concetpual change for teaching and learning about biological evolution. Evolution: Education and Outreach, 1(2), 189–195.  https://doi.org/10.1007/s12052-008-0037-8.Google Scholar
  111. Southerland, S. A., Abrams, E., Cummins, C. L., & Anzelmo, J. (2001). Understanding students’ explanations of biological phenomena: Conceptual frameworks or p-prims? Science Education, 85(4), 328–348.  https://doi.org/10.1002/sce.1013.CrossRefGoogle Scholar
  112. Speth, E. B., Shaw, N., Momsen, J., Reinagel, A., Le, P., Taqieddin, R., & Long, T. (2014). Introductory Biology Students’ Conceptual Models and Explanations of the Origin of Variation. CBE – Life Sciences Education, 13, 529–539.Google Scholar
  113. Spindler, L., & Doherty, J. (2009). Assessment of the teaching of evolution by natural selection through a hands-on simulation. In Teaching Issues and Experiments in Ecology, 6. Retrieved from http://tiee.esa.org/vol/v6/research/spindler/pdf/spindler.pdf.
  114. Strevens, M. (2000). The essentialist aspect of naive theories. Cognition, 74(2), 149–175.  https://doi.org/10.1016/S0010-0277(99)00071-2.CrossRefGoogle Scholar
  115. Tamir, P., & Zohar, A. (1991). Anthropomorphism and teleology in reasoning about biological phenomena. Science Education, 75(1), 57–67.  https://doi.org/10.1002/sce.3730750106.CrossRefGoogle Scholar
  116. Tibell, L. A. E., & Harms, U. (2017). Biological principles and threshold concepts for understanding natural selection - implications for developing visualizations as a pedagogic tool. Science & Education, 26(7), 953–973.  https://doi.org/10.1007/s11191-017-9935-x.CrossRefGoogle Scholar
  117. Tracy, J. L., Hart, J., & Martens, J. P. (2011). Death and science: The existential underpinnings of belief in intelligent design and discomfort with evolution. PLoS ONE, 6(3), e17349.  https://doi.org/10.1371/journal.pone.0017349.CrossRefGoogle Scholar
  118. Trend, R. D. (2001). Deep Time Framework: A preliminary study of U.K. primary teachers’ conceptions of geologic time and perceptions of geoscience. Journal of Research in Science Teaching, 38, 191–221.CrossRefGoogle Scholar
  119. Van Dijk, E. M., & Kattmann, U. (2009). Teaching evolution with historical narratives. Evolution: Education and Outreach, 2(3), 479–489.  https://doi.org/10.1007/s12052-009-0127-2.Google Scholar
  120. Van Dijk, E. M., & Kattmann, U. (2010). Evolution im Unterricht: Eine Studie über fachdidaktisches Wissen von Lehrerinnen und Lehrern. Zeitschrift für Didaktik der Naturwissenschaften, 16, 7–21.Google Scholar
  121. Weitzel, H., & Gropengießer, H. (2009). Vorstellungsentwicklung zur stammesgeschichtlichen Anpassung: Wie man Lernhindernisse verstehen und förderliche Lernangebote machen kann. Zeitschrift für Didaktik der Naturwissenschaften, 15, 287–305.Google Scholar
  122. Yates, T. B., & Marek, E. A. (2014). Teachers teaching misconceptions: a study of factors contributing to high school biology students’ acquisition of biological evolution-related misconceptions. Evolution: Education and Outreach, 7(1), 7.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IPN - Leibniz Institute for Science and Mathematics Education, Biology EducationKielGermany
  2. 2.UCL Institute of Education, University College LondonLondonUK

Personalised recommendations