Advertisement

Unified Management Platform of Quantum and Classical Keys in Power Communication System

  • Jinsuo LiuEmail author
  • Gaofeng Zhao
  • Jiawei Wu
  • Wei Jia
  • Ying Zhang
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 905)

Abstract

With the advancement of quantum communication infrastructure, especially the completion of the “Quantum Beijing-Shanghai Trunk Line” and the launch of the Mozi quantum satellite, more and more industries have begun to incorporate quantum cryptography into business systems. However, it brought trouble to the key management of the original business system. In this paper, in order to solve problem of managing quantum and classical keys, an unified management architecture of quantum and classical keys is designed, which contains four key components: Power vertical encryption & authentication gateway, classic encryption device, QKD device, and unified key management center. All of these four components cooperate with each other to form a complete and efficient integrated key management system, which effectively solves the problem that the current power system cannot realize the quantum key management.

Keywords

Quantum key distribution Key management Unified platform Power communication system 

Notes

Acknowledgement

This work is supported by 2017 Science and Technology Project of State Grid Corporation “Research and Development of Key Distribution Device in Dedicated Quantum Secure Communication for the Electrical Overhead Environment” (No. SGZJ0000KXJS1700339).

References

  1. 1.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)CrossRefGoogle Scholar
  2. 2.
    Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)CrossRefGoogle Scholar
  3. 3.
    Wang, M.Y., Yan, F.L.: Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state. Chin. Phys. B 20(12), 120309 (2011)CrossRefGoogle Scholar
  4. 4.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 7–11 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bennett, C.H.: Quantum Cryptography using any 2 Nonorthogonal States. Phys. Rev. Lett. 68(21), 3121–3124 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Shaari, J.S., Bahari, A.A.: Improved two-way six-state protocol for quantum key distribution. Phys. Lett. A 376(45), 2962–2966 (2012)CrossRefGoogle Scholar
  8. 8.
    Hiskett, P.A., Rosenberg, D., Peterson, C.G., Rice, P.: Long-distance quantum key distribution in optical fibre. New J. Phys. 8(9), 193 (2006)CrossRefGoogle Scholar
  9. 9.
    Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, Ch., Rarity, J., Zeilinger, A., Weinfurter, H.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)CrossRefGoogle Scholar
  10. 10.
    Peng, C.Z., Zhang, J., Yang, D., Gao, W.B., Ma, H.X., Yin, H., Zeng, H.P., Yang, T., Wang, X.B., Pan, J.W.: Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98(1), 010505 (2007)CrossRefGoogle Scholar
  11. 11.
    Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., Wang, S.K., Yang, D., Hu, Y.F., Jiang, S., Yang, T., Yin, H., Chen, K., Peng, C.Z., Pan, J.W.: Experimental free-space quantum teleportation. Nat. Photonics 4, 376 (2010)CrossRefGoogle Scholar
  12. 12.
    Yin, J., Ren, J.G., Lu, H., et al.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185 (2012)CrossRefGoogle Scholar
  13. 13.
    Xinhua: China Opens 2,000-km Quantum Communication Line. http://english.gov.cn/news/photos/2017/09/30/content_281475894651400.htm
  14. 14.
    SGCC: Specification for Functions and Interfaces and Security Policy of Unified Key Management System of State Grid Corporation of China. http://www.doc88.com/p-9761827189805.html
  15. 15.
    Resch, K.J., Lundeen, J.S., Steinberg, A.M.: Quantum state preparation and conditional coherence. Phys. Rev. Lett. 88(11), 113601 (2002)CrossRefGoogle Scholar
  16. 16.
    Agarwal, K., Bhatt, R.N., Sondhi, S.L.: Fast preparation of critical ground states using superluminal fronts. Phys. Rev. Lett. 120(21), 210604 (2018)CrossRefGoogle Scholar
  17. 17.
    Jiao, R.Z., Feng, C.X., Ma, H.Q.: Analysis of the differential-phase-shift-keying protocol in the quantum-key-distribution system. Chin. Phys. B 18(3), 915–917 (2009)CrossRefGoogle Scholar
  18. 18.
    Liu, W.J., Wang, F., Ji, S., et al.: Attacks and improvement of quantum sealed-bid auction with EPR Pairs. Commun. Theor. Phys. 61(6), 686–690 (2014)CrossRefGoogle Scholar
  19. 19.
    Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photonics 3(12), 706–714 (2009)CrossRefGoogle Scholar
  20. 20.
    Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu, W.J., Xu, Y., Yang, C.N., Gao, P.P., Yu, W.B.: An Efficient and secure arbitrary n-party quantum key agreement protocol using bell states. Int. J. Theor. Phys. 57(1), 195–207 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Naseri, M.: Secure quantum sealed-bid auction. Optics Commun. 282(9), 1939–1943 (2009)CrossRefGoogle Scholar
  23. 23.
    Liu, W.J., Wang, H.B., Yuan, G.L., Xu, Y., Chen, Z.Y., An, X.X., Ji, F.G., Gnitou, G.T.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15(2), 869–879 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jinsuo Liu
    • 1
    • 2
    Email author
  • Gaofeng Zhao
    • 1
    • 2
  • Jiawei Wu
    • 3
  • Wei Jia
    • 2
  • Ying Zhang
    • 2
  1. 1.State Grid Electric Power Research Institute, NARI Group CorporationNanjingChina
  2. 2.NRGD Quantum CTek., Ltd.NanjingChina
  3. 3.State Grid Electric Power Company Information and Communication CorporationShanghaiChina

Personalised recommendations