Advertisement

Predicting Drug-Target on Heterogeneous Network with Co-rank

  • Yu Huang
  • Lida Zhu
  • Han Tan
  • Fang Tian
  • Fang ZhengEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 905)

Abstract

Heterogeneous network can bring more information compare with homogeneous network, so it has been extensively employed in many research field. In this research, we use Co-rank frame to predict the heterogeneous network of drug targets. First, we construct separate networks according the drug and target data information, and then merge these networks with the bipartite graph network. We have designed an Intra-network RWR and an Inter-network RWR to combine the heterogeneous network of drug and target. We compared our algorithm to the RWR and the ROC and Recall curves of the algorithm are all superior to the RWR.

Keywords

Heterogeneous network Co-rank Drug-target 

Notes

Acknowledgement

This study is supported by Natural Science Foundation of Hubei Province of China (Program No. 2015CFB524), the Fundamental Research Funds for the Central Universities (Program No. 2015BQ023).

References

  1. 1.
    Bleakley, K., Yamanishi, Y.: Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 25, 2397–2403 (2009)CrossRefGoogle Scholar
  2. 2.
    Mei, J.P., Kwoh, C.K., Yang, P., Li, X.L., Zheng, J.: Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29, 238–245 (2013)CrossRefGoogle Scholar
  3. 3.
    Schattkowsky, T., Loeser, C.: Peer-to-peer technology for interconnecting web services in heterogeneous networks. In: International Conference on Advanced Information Networking and Applications, p. 611. IEEE Computer Society (2004)Google Scholar
  4. 4.
    Skjervold, E., Hafsøe, T., Johnsen, F.T., Lund, K: Delay and disruption tolerant Web services for heterogeneous networks. In: Military Communications Conference, Milcom, pp. 1–8 (2009)Google Scholar
  5. 5.
    Zhu, D., Zhang, Y., Chen, J., Cheng, B.: Enhancing ESB based execution platform to support flexible communication web services over heterogeneous networks. In: IEEE International Conference on Communications, pp. 1–6. IEEE Xplore (2010)Google Scholar
  6. 6.
    Dong, Y., Tang, J., Wu, S., Tian, J.L., Chawla, N.V., Rao, J.H., Cao, H.H.: Link prediction and recommendation across heterogeneous social networks. In: International Conference on Data Mining, pp. 181–190. IEEE (2013)Google Scholar
  7. 7.
    Huang, J., Nie, F., Huang, H., Tu, Y.C.: Trust prediction via aggregating heterogeneous social networks. In: ACM International Conference on Information and Knowledge Management, pp. 1774–1778. ACM (2012)Google Scholar
  8. 8.
    Blin, G., Fertin, G., Mohamed-Babou, H., Rusu, I., Sikora, F., Vialette, S.: Algorithmic aspects of heterogeneous biological networks comparison. In: International Conference on Combinatorial Optimization and Applications, pp. 272–286 (2011)CrossRefGoogle Scholar
  9. 9.
    Li, J., Zhao, P.X.: Mining functional modules in heterogeneous biological networks using multiplex pagerank approach. Front. Plant Sci. 7, 903 (2016)Google Scholar
  10. 10.
    Zhou, D., Orshanskiy, S.A., Zha, H., Giles, C.L.: Co-ranking authors and documents in a heterogeneous network. In: IEEE International Conference on Data Mining, pp. 739–744. IEEE (2007)Google Scholar
  11. 11.
    Soulier, L., Jabeur, L.B., Tamine, L., Bahsoun, W.: On ranking relevant entities in heterogeneous networks using a language-based model. J. Assoc. Inf. Sci. Technol. 64(3), 500–515 (2013)CrossRefGoogle Scholar
  12. 12.
    Ng, K.P., Li, X., Ye, Y.: MultiRank: co-ranking for objects and relations in multi-relational data. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Diego, CA, USA, pp. 1217–1225 (2011)Google Scholar
  13. 13.
    Sarma, A.D., Molla, A.R., Pandurangan, G., Upfal, E.: Fast distributed pagerank computation. In: Distributed Computing and Networking, pp. 113–121. Springer, Heidelberg (2013)Google Scholar
  14. 14.
    Shi, C., Li, Y., Zhang, J., Sun, Y., Yu, P.S.: A survey of heterogeneous information network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2017)CrossRefGoogle Scholar
  15. 15.
    Blatti, C., Sinha, S.: Characterizing gene sets using discriminative random walks with restart on heterogeneous biological networks. Bioinformatics 32(14), 2167–2175 (2016)CrossRefGoogle Scholar
  16. 16.
    Li, J.R., Chen, L., Wang, S.P., Zhang, Y., Kong, X., Huang, T., Cai, Y.D.: A computational method using the random walk with restart algorithm for identifying novel epigenetic factors. Mol. Genet. Genomics MGG 293(1), 1–9 (2017)Google Scholar
  17. 17.
    Quan, Y., Liu, M.Y., Liu, Y.M., Zhu, L.D., Wu, Y.S., Luo, Z.H., Zhang, X.Z., Xu, S.Z., Yang, Q.Y., Zhang, H.Y.: Facilitating anti-cancer combinatorial drug discovery by targeting epistatic disease genes. Molecules 23(4), 736 (2018)CrossRefGoogle Scholar
  18. 18.
    Human protein reference database. http://www.hprd.org/
  19. 19.
    Liu, X.Y.: Heterogeneous Network Model Based Method for Disease Gene Prediction. XiDian University, Xi’an (2013)Google Scholar
  20. 20.
    Buza, K., Peška, L.: Drug-target interaction prediction with Bipartite Local Models and hubness-aware regression. Neurocomputing 260, 284–293 (2017)CrossRefGoogle Scholar
  21. 21.
    Wang, W., Yang, S., Zhang, X., Li, J.: Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 30(20), 2923–2930 (2016)CrossRefGoogle Scholar
  22. 22.
    Fu, G., Ding, Y., Seal, A., Chen, B., Sun, Y.Z., Bolton, E.: Predicting drug target interactions using meta-path-based semantic network analysis. BMC Bioinformatics 17(1), 160 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yu Huang
    • 1
  • Lida Zhu
    • 2
  • Han Tan
    • 3
  • Fang Tian
    • 1
  • Fang Zheng
    • 1
    • 2
    Email author
  1. 1.College of InformaticsHuazhong Agricultural UniversityWuhanChina
  2. 2.Hubei Key Laboratory of Agricultural Bioinformatics, College of InformaticsHuazhong Agricultural UniversityWuhanChina
  3. 3.Department of Mechanical EngineeringWuhan Vocational College of Software and EngineeringWuhanChina

Personalised recommendations