Advertisement

Layer Clustering-Enhanced Stochastic Block Model for Community Detection in Multiplex Networks

  • Chaochao Liu
  • Wenjun Wang
  • Carlo Vittorio Cannistraci
  • Di Jin
  • Yueheng SunEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 905)

Abstract

Nowadays, multiplex data are often collected, and the study of multiplex-network (MN)s’ community detection is a cutting-edge topic. multiplex-network (MN) layers can be grouped by clustering, and there are correlations between network layers that are assigned to the same cluster. Although the differences between network layers entail that the node community membership can differ across the layers, Stochastic-Block-Models (SBM)-based MN-community-detection methods current available are theoretically constrained to assume the same node community membership across the layers. Here, we propose a new SBM-based MN-community-detection algorithm, which surpasses this theoretical constraint by exploiting a two-stage procedure. Numerical experiments show that the proposed algorithm can be more accurate and robust than multilayer-Louvain algorithm, and may help to contain some inference issues of classical monolayer SBM. Finally, results on two real-world datasets suggest that our algorithm can mine meaningful relationships between network layers.

Keywords

Multilayer networks Stochastic block model Community detection Network layer clustering 

Notes

Acknowledgement

This work was supported by the National Key R&D Program of China (2018YFC0809800, 2016QY15Z2502-02, 2018YFC0831000), the Project of National Social Science Fund 15BTQ056, and the National Natural Science Foundation of China (91746205, 91746107, 51438009); The Klaus Tschira Stiftung (KTS) gGmbH, Germany (Grant number: 00.285.2016).

References

  1. 1.
    Boccaletti, S., Bianconi, G., Criado, R., del Genio, C.I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cannistraci, C.V., Ogorevc, J., Zorc, M., Ravasi, T., Dovc, P., Kunej, T.: Pivotal role of the muscle-contraction pathway in cryptorchidism and evidence for genomic connections with cardiomyopathy pathways in rasopathies. BMC Med. Genomics 6, 5 (2013)CrossRefGoogle Scholar
  3. 3.
    Durán, C., Daminelli, S., Thomas, J.M., Joachim Haupt, V., Schroeder, M., Cannistraci, C.V.: Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory. Brief. Bioinform. 19, 1183–1202 (2017)CrossRefGoogle Scholar
  4. 4.
    Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    De Domenico, M., Nicosia, V., Arenas, A., Latora, V.: Structural reducibility of multilayer networks. Nat. Commun. 6, 6864 (2015)CrossRefGoogle Scholar
  6. 6.
    Taylor, D., Shai, S., Stanley, N., Mucha, P.J.: Enhanced detectability of community structure in multilayer networks through layer aggregation. Phys. Rev. Lett. 116, 228301 (2016)CrossRefGoogle Scholar
  7. 7.
    Han, Q., Xu, K., Airoldi, E.: Consistent estimation of dynamic and multi-layer block models. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 1511–1520 (2015)Google Scholar
  8. 8.
    Barbillon, P., Donnet, S., Lazega, E., Bar-Hen, A.: Stochastic block models for multiplex networks: an application to a multilevel network of researchers. J. R. Stat. Soc. Ser. (Stat. Soc.) (2016)Google Scholar
  9. 9.
    Stanley, N., Shai, S., Taylor, D., Mucha, P.J.: Clustering network layers with the strata multilayer stochastic block model. IEEE Trans. Netw. Sci. Eng. 3, 95–105 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Iacovacci, J., Wu, Z., Bianconi, G.: Mesoscopic structures reveal the network between the layers of multiplex data sets. Phys. Rev. E 92, 042806 (2015)CrossRefGoogle Scholar
  11. 11.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. (2008)Google Scholar
  12. 12.
    Peixoto, T.P.: Efficient monte carlo and greedy heuristic for the inference of stochastic block models. Phys. Rev. E 89, 012804 (2014)CrossRefGoogle Scholar
  13. 13.
    Meilă, M.: Comparing clusterings-an information based distance. J. Multivar. Anal. 98(5), 873–895 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Vallès-Català, T., Peixoto, T.P., Guimerà, R., Sales-Pardo, M.: On the consistency between model selection and link prediction in networks. Mach. Learn. (2017)Google Scholar
  15. 15.
    Muscoloni, A., Cannistraci, C.V.: Local-ring network automata and the impact of hyperbolic geometry in complex network link-prediction. Phys. Soc. (2018)Google Scholar
  16. 16.
    Roethlisberger, F.J., Dickson, W.J.: Management and the Worker: Social Versus Technical Organization in Industry. Harvard University Press, Cambridge (1939)Google Scholar
  17. 17.
    Magnani, M., Micenkova, B., Rossi, L.: Combinatorial analysis of multiple networks. Soc. Inf. Netw. (2013)Google Scholar
  18. 18.
    Nowicki, K., Snijders, T.A.B.: Estimation and prediction for stochastic blockstructures. J. Am. Stat. Assoc. 96, 1077–1087 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Chaochao Liu
    • 1
    • 2
  • Wenjun Wang
    • 1
    • 2
  • Carlo Vittorio Cannistraci
    • 3
  • Di Jin
    • 1
  • Yueheng Sun
    • 1
    • 2
    Email author
  1. 1.College of Intelligence and ComputingTianjin UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of Advanced Networking (TANK)Tianjin UniversityTianjinChina
  3. 3.Biotechnology CenterTechnische Universitat DresdenDresdenGermany

Personalised recommendations