A Toolbox for the Identification of Modes of Action of Natural Products

  • Tiago RodriguesEmail author
Part of the Progress in the Chemistry of Organic Natural Products book series (POGRCHEM, volume 110)


Natural products have long played a leading role as direct source of drugs or as a means to inspire informed molecular design. Indeed, natural products have been biologically prevalidated as protein-binding motifs by millions of years of evolutionary pressure. Despite the tailored architectures, and the ever-growing chemistry toolbox to aid access such privileged structures, identifying the modes of action by which these molecules can be harnessed as therapeutics remains a major bottleneck in discovery chemistry. Herein, an overview of cheminformatics methods applied to the identification of modes of action of natural products is given, and a discussion of successful case studies is provided. A special focus is given to machine learning methods that may help to streamline the development of natural products into drug leads.


Cheminformatics Machine learning Chemical biology Medicinal chemistry Natural products Drug discovery Target identification 



Tiago Rodrigues is a Marie Skłodowska-Curie Fellow (Grant 743640) and acknowledges the FCT/FEDER (02/SAICT/2017, Grant 28333) for funding.


  1. 1.
    van Hattum H, Waldmann H (2014) Biology-oriented synthesis: harnessing the power of evolution. J Am Chem Soc 136:11853CrossRefGoogle Scholar
  2. 2.
    Rodrigues T (2017) Harnessing the potential of natural products in drug discovery from a cheminformatics vantage point. Org Biomol Chem 15:9275CrossRefGoogle Scholar
  3. 3.
    Rodrigues T, Reker D, Schneider P, Schneider G (2016) Counting on natural products for drug design. Nat Chem 8:531CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wetzel S, Bon RS, Kumar K, Waldmann H (2011) Biology-oriented synthesis. Angew Chem Int Ed 50:10800CrossRefGoogle Scholar
  5. 5.
    Baran PS (2018) Natural product total synthesis: as exciting as ever and here to stay. J Am Chem Soc 140:4751CrossRefGoogle Scholar
  6. 6.
    Laraia L, Waldmann H (2017) Natural product inspired compound collections: evolutionary principle, chemical synthesis, phenotypic screening, and target identification. Drug Discov Today Technol 23:75CrossRefGoogle Scholar
  7. 7.
    Laraia L, Robke L, Waldmann H (2018) Bioactive compound collections: from design to target identification. Chem 4:705CrossRefGoogle Scholar
  8. 8.
    Reker D, Rodrigues T, Schneider P, Schneider G (2014) Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci U S A 111:4067CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hopkins AL (2007) Network pharmacology. Nat Biotechnol 25:1110CrossRefGoogle Scholar
  10. 10.
    Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682CrossRefGoogle Scholar
  11. 11.
    Moellering RE, Cravatt BF (2012) How chemoproteomics can enable drug discovery and development. Chem Biol 19:11CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Parker CG, Kuttruff CA, Galmozzi A, Jørgensen L, Yeh CH, Hermanson DJ, Wang Y, Artola M, McKerrall SJ, Josyln CM, Nørremark B, Dünstl G, Felding J, Saez E, Baran PS, Cravatt BF (2017) Chemical proteomics identifies SLC25A20 as a functional target of the ingenol class of actinic keratosis drugs. ACS Cent Sci 3:1276CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rodrigues T, Werner M, Roth J, da Cruz EHG, Marques MC, Akkapeddi P, Lobo SA, Koeberle A, Corzana F, da Silva Júnior EN, Werz O, Bernardes GJL (2018) Machine intelligence decrypts β-lapachone as an allosteric 5-lipoxygenase inhibitor. Chem Sci 9:6899CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discov 9:273CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rodrigues T, Reker D, Kunze J, Schneider P, Schneider G (2015) Revealing the macromolecular targets of fragment-like natural products. Angew Chem Int Ed 54:10516CrossRefGoogle Scholar
  16. 16.
    Singh G, Schulthess D, Hughes N, Vannieuwenhuyse B, Kalra D (2018) Real world big data for clinical research and drug development. Drug Discov Today 23:652CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mayr A, Klambauer G, Unterthiner T, Steijaert M, Wegner JK, Ceulemans H, Clevert D-A, Hochreiter S (2014) Biology-oriented synthesis: harnessing the power of evolution. J Am Chem Soc 136:11853CrossRefGoogle Scholar
  18. 18.
    Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today 20:318CrossRefGoogle Scholar
  19. 19.
    Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25:197CrossRefGoogle Scholar
  20. 20.
    Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32:335CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18:178CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Xu D, Zhang Y (2011) Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 101:2525CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12CrossRefGoogle Scholar
  26. 26.
    Hartshorn MJ, Verdonk ML, Chessari G, Brewerton SC, Mooij WT, Mortenson PN, Murray CW (2007) Diverse, high-quality test set for the validation of protein-ligand docking performance. J Med Chem 50:726CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Roberts BC, Mancera RL (2008) Ligand-protein docking with water molecules. J Chem Inf Model 48:397CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE (2010) Selective inhibition of BET bromodomains. Nature 468:1067CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ladbury JE (1996) Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design. Chem Biol 3:973CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Brik A, Wong CH (2003) HIV-1 protease: mechanism and drug discovery. Org Biomol Chem 1:5CrossRefGoogle Scholar
  31. 31.
    Bertoldo JB, Rodrigues T, Dunsmore L, Aprile FA, Marques MC, Rosado LA, Boutureira O, Steinbrecher TB, Sherman W, Corzana F, Terenzi H, Bernardes GJL (2017) A water-bridged cysteine-cysteine redox regulation mechanism in bacterial protein tyrosine phosphatases. Chem 3:665CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cappel D, Sherman W, Beuming T (2017) Calculating water thermodynamics in the binding site of proteins – applications of WaterMap to drug discovery. Curr Top Med Chem 17:2586CrossRefGoogle Scholar
  33. 33.
    Do Q, Lamy C, Renimel I, Sauvan N, André P, Himbert F, Morin-Allory L, Bernard P (2007) Reverse pharmacognosy: identifying biological properties for plants by means of their molecule constituents: application to meranzin. Planta Med 73:1235CrossRefGoogle Scholar
  34. 34.
    Renner S, Schwab CH, Gasteiger J, Schneider G (2006) Impact of conformational flexibility on three-dimensional similarity searching using correlation vectors. J Chem Inf Model 46:2324CrossRefGoogle Scholar
  35. 35.
    Zhang Q, Muegge I (2006) Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring. J Med Chem 49:1536CrossRefGoogle Scholar
  36. 36.
    Hawkins PC, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74CrossRefGoogle Scholar
  37. 37.
    Gasteiger J, Rudolph C, Sadowski J (1990) Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput Method 3:537CrossRefGoogle Scholar
  38. 38.
    Chen IJ, Foloppe N (2008) Conformational sampling of druglike molecules with MOE and catalyst: implications for pharmacophore modeling and virtual screening. J Chem Inf Model 48:1773CrossRefGoogle Scholar
  39. 39.
    Rupp M, Bauer MR, Wilcken R, Lange A, Reutlinger M, Boeckler FM, Schneider G (2014) Machine learning estimates of natural product conformational energies. PLoS Comput Biol 10:e1003400CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rollinger JM, JM Schuster D, Danzl B, Schwaiger S, Markt P, Schmidtke M, Gertsch J, Raduner S, Wolber G, Langer T, Stuppner H (2009) In silico target fishing for rationalized ligand discovery exemplified on constituents of Ruta graveolens. Planta Med 75:195CrossRefGoogle Scholar
  41. 41.
    Vuorinen A, Nashev LG, Odermatt A, Rollinger JM, Schuster D (2014) Pharmacophore model refinement for 11β-hydroxysteroid dehydrogenase inhibitors: search for modulators of intracellular glucocorticoid concentrations. Mol Inf 33:15CrossRefGoogle Scholar
  42. 42.
    Bauer J, Waltenberger B, Noha SM, Schuster D, Rollinger JM, Boustie J, Chollet M, Stuppner H, Werz O (2012) Discovery of depsides and depsidones from lichen as potent inhibitors of microsomal prostaglandin E2 synthase-1 using pharmacophore models. ChemMedChem 7:2077CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fakhrudin N, Ladurner A, Atanasov AG, Heiss EH, Baumgartner L, Markt P, Schuster D, Ellmerer EP, Wolber G, Rollinger JM, Stuppner H, Dirsch VM (2010) Computer-aided discovery, validation, and mechanistic characterization of novel neolignan activators of peroxisome proliferator-activated receptor gamma. Mol Pharmacol 77:559CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Atanasov AG, Wang JN, Gu SP, Bu J, Kramer MP, Baumgartner L, Fakhrudin N, Ladurner A, Malainer C, Vuorinen A, Noha SM, Schwaiger S, Rollinger JM, Schuster D, Stuppner H, Dirsch VM, Heiss EH (2013) Honokiol: a non-adipogenic PPARgamma agonist from Nature. Biochim Biophys Acta 1830:4813CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Brown RD, Martin YC (1997) The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J Chem Inf Comput Sci 37:1CrossRefGoogle Scholar
  46. 46.
    Axen SD, Huang XP, Caceres EL, Gendelev L, Roth BL, Keiser MJ (2017) A simple representation of three-dimensional molecular structure. J Med Chem 60:7393CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bajusz D, Racz A, Heberger K (2015) Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminf 7:20CrossRefGoogle Scholar
  48. 48.
    Sheridan RP, Kearsley SK (2002) Why do we need so many chemical similarity search methods? Drug Discov Today 7:903CrossRefGoogle Scholar
  49. 49.
    Bender A, Jenkins JL, Scheiber J, Sukuru SC, Glick M, Davies JW (2009) How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J Chem Inf Model 49:108CrossRefGoogle Scholar
  50. 50.
    Xue L, Bajorath J (2000) Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb Chem High Throughput Screen 3:363CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bajorath J (2001) Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening. J Chem Inf Comput Sci 41:233CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Livingstone DJ (2000) The characterization of chemical structures using molecular properties. A survey. J Chem Inf Comput Sci 40:195CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, Whaley R, Glennon RA, Hert J, Thomas KL, Edwards DD, Shoichet BK, Roth BL (2009) Predicting new molecular targets for known drugs. Nature 462:175CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, Lavan P, Weber E, Doak AK, Côté S, Shoichet BK, Urban L (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature 486:361CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hert J, Keiser MJ, Irwin JJ, Oprea TI, Shoichet BK (2008) Quantifying the relationships among drug classes. J Chem Inf Model 48:755CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis LJ, Cibrián-Uhalte E, Davies M, Dedman N, Karlsson A, Magariños MP, Overington JP, Papadatos G, Smit I, Leach AR (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:D945CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sá MS, de Menezes MN, Krettli AU, Ribeiro IM, Tomassini TC, Ribeiro dos Santos R, de Azevedo WF Jr, Soares MB (2011) Antimalarial activity of physalins B, D, F, and G. J Nat Prod 74:2269CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A (2018) Machine learning for molecular and materials science. Nature 559:547CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Merk D, Friedrich L, Grisoni F, Schneider G (2018) De novo design of bioactive small molecules by artificial intelligence. Mol Inf 37:1700153CrossRefGoogle Scholar
  60. 60.
    Kirchmair J, Williamson MJ, Afzal AM, Tyzack JD, Choy AP, Howlett A, Rydberg P, Glen RC (2013) FAst MEtabolizer (FAME): a rapid and accurate predictor of sites of metabolism in multiple species by endogenous enzymes. J Chem Inf Model 53:2896CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Tian S, Wang J, Li Y, Xu X, Hou T (2012) Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches. Mol Pharmaceutics 9:2875CrossRefGoogle Scholar
  62. 62.
    Segler MHS, Preuss M, Waller MP (2018) Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555:604CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Reker D, Bernardes GJL, Rodrigues T (2018) Evolving and nano data enabled machine intelligence for chemical reaction optimization. ChemRxiv:
  64. 64.
    Reutlinger M, Rodrigues T, Schneider P, Schneider G (2014) Multi-objective molecular de novo design by adaptive fragment prioritization. Angew Chem Int Ed 53:4244CrossRefGoogle Scholar
  65. 65.
    Rodrigues T, Hauser N, Reker D, Reutlinger M, Wunderlin T, Hamon J, Koch G, Schneider G (2015) Multidimensional de novo design reveals 5-HT2B receptor-selective ligands. Angew Chem Int Ed 54:1551CrossRefGoogle Scholar
  66. 66.
    Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16:747CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Poroikov V, Filimonov D, Lagunin A, Gloriozova T, Zakharov A (2007) PASS: identification of probable targets and mechanisms of toxicity. SAR QSAR Environ Res 18:101CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Filimonov D, Poroikov V, Borodina Y, Gloriozova T (1999) Chemical similarity assessment through multilevel neighborhoods of atoms: definition and comparison with the other descriptors. J Chem Inf Comput Sci 39:666CrossRefGoogle Scholar
  69. 69.
    Lagunin A, Filimonov D, Poroikov V (2010) Multi-targeted natural products evaluation based on biological activity prediction with PASS. Curr Pharm Des 16:1703CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Reutlinger M, Koch CP, Reker D, Todoroff N, Schneider P, Rodrigues T, Schneider G (2013) Chemically Advanced Template Search (CATS) for scaffold-hopping and prospective target prediction for “orphan” molecules. Mol Inf 32:133CrossRefGoogle Scholar
  71. 71.
    Schneider G, Neidhart W, Giller T, Schmid G (1999) “Scaffold-hopping” by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed 38:2894CrossRefGoogle Scholar
  72. 72.
    Schneider P, Schneider G (2003) Collection of bioactive reference compounds for focused library design. QSAR Comb Sci 22:713CrossRefGoogle Scholar
  73. 73.
    Reker D, Perna AM, Rodrigues T, Schneider P, Reutlinger M, Mönch B, Koeberle A, Lamers C, Gabler M, Steinmetz H, Müller R, Schubert-Zsilavecz M, Werz O, Schneider G (2014) Revealing the macromolecular targets of complex natural products. Nat Chem 6:1072CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Schneider G, Reker D, Chen T, Hauenstein K, Schneider P, Altmann KH (2016) Deorphanizing the macromolecular targets of the natural anticancer compound doliculide. Angew Chem Int Ed 55:12408CrossRefGoogle Scholar
  75. 75.
    Hicken EJ, Marmsater FP, Munson MC, Schlachter ST, Robinson JE, Allen S, Burgess LE, DeLisle RK, Rizzi JP, Topalov GT, Zhao Q, Hicks JM, Kallan NC, Tarlton E, Allen A, Callejo M, Cox A, Rana S, Klopfenstein N, Woessner R, Lyssikatos JP (2014) Discovery of a novel class of imidazo[1,2-a]pyridines with potent PDGFR activity and oral bioavailability. ACS Med Chem Lett 5:78CrossRefGoogle Scholar
  76. 76.
    Wu TS, Shi L-S, Wang J-J, Iou S-C, Chang H-C, Chen Y-P, Kuo Y-H, Chang Y-L, Tenge C-M (2013) Cytotoxic and antiplatelet aggregation principles of Ruta graveolens. J Chin Chem Soc 50:171CrossRefGoogle Scholar
  77. 77.
    Akbulut Y, Gaunt HJ, Muraki K, Ludlow MJ, Amer MS, Bruns A, Vasudev NS, Radtke L, Willot M, Hahn S, Seitz T, Ziegler S, Christmann M, Beech DJ, Waldmann H (2015) Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels. Angew Chem Int Ed 54:3787CrossRefGoogle Scholar
  78. 78.
    Carson C, Raman P, Tullai J, Xu L, Henault M, Thomas E, Yeola S, Lao J, McPate M, Verkuyl JM, Marsh G, Sarber J, Amaral A, Bailey S, Lubicka D, Pham H, Miranda N, Ding J, Tang HM, Ju H, Tranter P, Ji N, Krastel P, Jain RK, Schumacher AM, Loureiro JJ, George E, Berellini G, Ross NT, Bushell SM, Erdemli G, Solomon JM (2015) Englerin A agonizes the TRPC4/C5 cation channels to inhibit tumor cell line proliferation. PLoS One 10:e0127498CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Rodrigues T, Sieglitz F, Somovilla VJ, Cal PM, Galione A, Corzana F, Bernardes GJ (2016) Unveiling (–)-englerin A as a modulator of L-type calcium channels. Angew Chem Int Ed 55:11077CrossRefGoogle Scholar
  80. 80.
    Rodrigues T, Sieglitz F, Bernardes GJ (2016) Natural product modulators of transient receptor potential (TRP) channels as potential anti-cancer agents. Chem Soc Rev 45:6130CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Schneider P, Schneider G (2017) De-orphaning the marine natural product (±)-marinopyrrole A by computational target prediction and biochemical validation. Chem Commun 53:2272CrossRefGoogle Scholar
  82. 82.
    Schneider P, Schneider G (2017) A computational method for unveiling the target promiscuity of pharmacologically active compounds. Angew Chem Int Ed 56:11520CrossRefGoogle Scholar
  83. 83.
    Reker D, Bernardes GJL, Rodrigues T (2019) Computational advances in combating colloidal aggregation in drug discovery. Nat Chem 11(5):402–418CrossRefGoogle Scholar
  84. 84.
    Robke L, Rodrigues T, Schröder P, Foley DJ, Bernardes GJL, Laraia L, Waldmann H (2018) Discovery of 2,4-dimethoxypyridines as novel autophagy inhibitors. Tetrahedron 74:4531CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chemical BiologyInstituto de Medicina Molecular João Lobo AntunesLisbonPortugal

Personalised recommendations