Advertisement

Reconfigurable Video Processor for Space

  • L. Armesto CarideEmail author
  • A. Rodríguez
  • A. Pérez Garcia
  • S. Sáez
  • J. Valls
  • Y. Barrios
  • A. J. Sanchez Clemente
  • D. González Arjona
  • Á. J.-P. Herrera
  • F. Veljković
Chapter

Abstract

This work presents a Reconfigurable Video Processor demonstrator that takes the benefit of ENABLE-S3 developments for the integration and validation of image processing applications demanded by the emerging space industry. Applications such as On-board hyperspectral image compression for Earth observations and Autonomous Vision-based Navigation for Guidance, Navigation and Control of the spacecraft form part of the demonstrator. Modern space industry requires more flexibility, larger platforms and lower design costs. Hence, an SRAM-based Field-programmable gate array (FPGA) is selected as the platform for the processor. Although compliant with the aforementioned specifications, this technology is highly susceptible to radiation effects. In this work the space environment has been simulated by a virtual radiation sensor thus decreasing the design time, costs and very expensive hours “in the beam” available in a small number of Radiation Facilities. The virtual sensor and reconfiguration techniques help to validate the proposed applications and to exhaustively test the SRAM-based FPGA prior to radiation testing. With this approach the reduction of design and testing costs has been achieved and the confidence in the technology and the algorithms has been gained. In addition, the a2K Tool Suite has been used to assist in the V&V process of the demonstrator decreasing the number of tests, testing time and cost of personnel, all of them being the objectives of ENABLE S3 project.

Keywords

FPGA Space Fault tolerance Fault injection V&V modelling Hyperspectral image acquisition Vision based navigation VBN HW flexibility Fault rate ENABLE S3 

References

  1. 1.
    Rodríguez, A., Valverde, J., Portilla, J., Otero, A., Riesgo, T., de la Torre, E.: FPGA-based high-performance embedded Systems for Adaptive Edge Computing in cyber-physical systems: the ARTICo3 framework. Sensors. 18, 1877 (2018)CrossRefGoogle Scholar
  2. 2.
    Transon, J., d’Andrimont, R., Maugnard, A., Defourny, P.: Survey of hyperspectral earth observation applications from space in the Sentinel-2 context. Remote Sens. 10(2), 1–32 (2018)Google Scholar
  3. 3.
    Christophe, E.: Hyperspectral data compression tradeoff. In: Prasad, S., et al. (eds.) Optical Remote Sensing. Advances in Signal Processing and Exploitation Techniques. Springer, Berlin, pp. 9–29 [Online]. http://link.springer.com/10.1007/978-3-642-14212-3 (2011)CrossRefGoogle Scholar
  4. 4.
    Valsesia, D., Magli, E.: Fast and lightweight rate control for onboard predictive coding of Hyperspectral images. IEEE Geosci. Remote Sens. Lett. 14(3), 394–398 (2017)CrossRefGoogle Scholar
  5. 5.
    The Consultative Committee for Space Data Systems, Lossless Multispectral and Hyperspectral Image Compression, CCSDS 123.0-B-1 Recommended Standard, no. May. 2012Google Scholar
  6. 6.
    Valsesia, D., Magli, E.: A hardware-friendly architecture for onboard rate-controlled predictive coding of hyperspectral and multispectral images. In: International Conference on Image Processing, pp. 5142–5146. IEEE, Paris, France (2014)Google Scholar
  7. 7.
    ENABLE-S3 Consortium.: Generic Test Architecture. https://www.enable-s3.eu/media/publications/ (2017)
  8. 9.
    Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. Pattern Anal Mach Intell. 30(2), 328–341 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • L. Armesto Caride
    • 1
    Email author
  • A. Rodríguez
    • 2
  • A. Pérez Garcia
    • 2
  • S. Sáez
    • 3
  • J. Valls
    • 3
  • Y. Barrios
    • 4
  • A. J. Sanchez Clemente
    • 4
  • D. González Arjona
    • 5
  • Á. J.-P. Herrera
    • 5
  • F. Veljković
    • 1
  1. 1.TASE–Thales Alenia Space España S.ATres CantosSpain
  2. 2.UPM—Universidad Politécnica MadridMadridSpain
  3. 3.ITI—Instituto Tecnológico de InformáticaValenciaSpain
  4. 4.ULPGC—Universidad de Las Palmas de Gran CanariaLas PalmasSpain
  5. 5.GMV Aerospace and Defence S.A.UMadridSpain

Personalised recommendations