Advertisement

Camera Sensor System Decomposition for Implementation and Comparison of Physical Sensor Models

  • Marcel Mohr
  • Gustavo Garcia PadillaEmail author
  • Kai-Uwe Däne
  • Thomas D’hondt
Chapter

Abstract

In this chapter, as in the preceding chapters of lidar and radar modeling, we present results of the camera sensor modeling workgroup within ENABLE-S3. The main objectives are similar to those of the lidar and radar workgroups, namely to find a common language and understanding when describing camera sensors. These agreed results could now be used as a reference. The results of the functional decomposition can be used to identify and define standardized interfaces for camera (e.g. in the Open Simulation Interface (OSI) project).

References

  1. 1.
    Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann, Cambridge, MA (2016)Google Scholar
  2. 2.
  3. 3.
    Maddalena, S., Darmon, A., Diels, R.: Automotive CMOS image sensors. In: Valldorf, J., Gessner, W. (eds.) Advanced Microsystems for Automotive Applications 2005. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Continental Engineering Services GmbH: Standardized ARS Interface – Technical Documentation (2012)Google Scholar
  5. 5.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, pp. 138–183. Cambridge University Press, New York (2000)zbMATHGoogle Scholar
  6. 6.
    Szeliski, R.: Computer Vision, p. 44. Springer, London (2011)CrossRefGoogle Scholar
  7. 7.
    Scaramuzza, D.: Omnidirectional vision: from calibration to robot motion estimation. PhD Thesis no. 17635, ETH Zurich (2008)Google Scholar
  8. 8.
    McGrath, M., Ni Scanaill, C.: Sensor Technologies: Healthcare, Wellness and Environmental Applications. Apress, New York (2013)CrossRefGoogle Scholar
  9. 9.
    Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. In: Proceedings of the IEEE (2003)Google Scholar
  10. 10.
    Sorenson, H.W., Stubberud, A.R.: Non-linear filtering by approximation of the a posteriori density. Int. J. Control. 8(1), 33–51 (1968)CrossRefGoogle Scholar
  11. 11.
    Del Moral, P.: Nonlinear filtering: interacting particle resolution. Markov Process. Relat. Fields. 2(4), 555–580 (1996)zbMATHGoogle Scholar
  12. 5.
    Open Simulation Interface: https://github.com/OpenSimulationInterface

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marcel Mohr
    • 1
  • Gustavo Garcia Padilla
    • 1
    Email author
  • Kai-Uwe Däne
    • 1
  • Thomas D’hondt
    • 2
  1. 1.Hella Aglaia Mobile Vision GmbHBerlinGermany
  2. 2.Siemens Industry Software NVLeuvenBelgium

Personalised recommendations