Potential Applications of Lignin

  • Marlene KienbergerEmail author


The increasing consumption of fossil fuels is associated with environmental issues such as global warming and environmental pollution. Therefore, efforts have been made to find sustainable alternatives for different materials and energy sources. Plant biomass, especially wood, is the most important renewable material. The main constituents of vascular plants are cellulose with a content of 42–51%, hemicellulose with a content of 24–40%, and lignin with a content of 18–30%. Cellulose and hemicellulose represent the cell walls, while lignin acts as a strengthener thereof, and inhibits enzymatic degradation, regulates water transport, and demonstrates antibacterial activity. The utilization of todays and potential tomorrows application of lignin is summarizes in this chapter.


  1. Applications R (1992) Lignins: a safe solution for roads 1(3)Google Scholar
  2. Aro T, Fatehi P (2017) Production and application of lignosulfonates and sulfonated lignin. ChemSusChem, 1861–1877Google Scholar
  3. Baker DA, Gallego NC, Baker FS (2012) On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. J Appl Polym Sci 124(1):227–234CrossRefGoogle Scholar
  4. Behr A, Seidensticker T (2018) Einführung in die Chemie nachwachsender Rohstoffe. Springer Spektrum, Berlin, HeidelbergCrossRefGoogle Scholar
  5. Bjørsvik H-R, Minisci F (1999) Fine chemicals from lignosulfonates. 1. Synthesis of vanillin by oxidation of lignosulfonates. Org Process Res Dev 3(5):330–340Google Scholar
  6. Blecua M, Fatas E, Ocon P, Valenciano J, de la Fuente F, Trinidad F (2017) Influences of carbon materials and lignosulfonates in the negative active material of lead-acid batteries for microhybrid vehicles. J Energy Storage 11:55–63CrossRefGoogle Scholar
  7. Boden DP (1998) Selection of pre-blended expanders for optimum lead/acid battery performance. J Power Sources 73(1):89–92CrossRefGoogle Scholar
  8. Bourzac K (2015) Inner workings: paving with plants. Proc Natl Acad Sci USA 112(38):11743–11744CrossRefGoogle Scholar
  9. Bryan CC (1954) Manufacture of vanillin from lignin. United States Patent, 2,692,291Google Scholar
  10. Calvo-Flores FG, Dobado JA, Isac-GarcÃa JÃ, MartÃn-MartÃnez FJ (2015) Lignin and lignans as renewable raw materials: chemistry, technology and applications. WileyGoogle Scholar
  11. Chan SLH, Baker CGJ, Beeckmans JM (1976) Flocculating properties of high molecular weight lignosulphonates. Powder Technol 13:223–230CrossRefGoogle Scholar
  12. Chaochanchaikul K, Jayaraman K, Rosarpitak V, Sombatsompop N (2012) Influence of lignin content on photodegradation in wood/HDPE composites under UV weathering. BioResources 7(1):38–55Google Scholar
  13. Chen Y, Frihart CR, Cai Z, Lorenz LF, Stark NM (2013) Lignin-based phenol-formaldehyde resins from purified CO2 precipitated Kraft lignin (PCO2KL). In: International conference on wood adhesives, pp 601–611Google Scholar
  14. da Silva EAB, Zabkova M, Araújo JD, Cateto CA, Barreiro MF, Belgacem MN, Rodrigues AE (2009) An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem Eng Res Des 87(9):1276–1292CrossRefGoogle Scholar
  15. Dallmeyer I, Chowdhury S, Kadla JF (2013) Preparation and characterization of Kraft lignin-based moisture-responsive films with reversible shape-change capability. Biomacromol 14(7):2354–2363CrossRefGoogle Scholar
  16. Dehne L, Vila Babarro C, Saake B, Schwarz KU (2016) Influence of lignin source and esterification on properties of lignin-polyethylene blends. Ind Crops Prod 86:320–328CrossRefGoogle Scholar
  17. Detroit WJ (1988) Controlled release formulation for fertilizers. United States Patent, 4,756,738Google Scholar
  18. Detroit WJ (1991) Lignosulfonates treated fertilizer particles. United States Patent, 5,041,153Google Scholar
  19. Domenek S, Louaifi A, Guinault A, Baumberger S (2013) Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ 21(3):692–701CrossRefGoogle Scholar
  20. Fache M, Boutevin B, Caillol S (2016) Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng 4(1):35–46CrossRefGoogle Scholar
  21. Fargues C, Mathias Á, Rodrigues A (1996) Kinetics of vanillin production from Kraft lignin oxidation. Ind Eng Chem Res 35(1):28–36CrossRefGoogle Scholar
  22. Feng Q, Chen F, Wu H (2011) Preparation and characterization of a temperature-sensitive lignin-based hydrogel. BioResources 6(4):4942–4952Google Scholar
  23. Gonçalves AR, Benar P (2001) Hydroxymethylation and oxidation of organosolv lignins and utilization of the products. Biores Technol 79(2):103–111CrossRefGoogle Scholar
  24. Gundersen SA, Sjoblom J (1991) High and Low-molecular-weight lignosulfonates and Kraft lignins as Oil/water-emulsion stabilizers studied by means of electrical conductivity. Colloid Polym Sci 277:462–468CrossRefGoogle Scholar
  25. Hambardzumyan A, Foulon L, Chabbert B, Aguié-Béghin V (2012) Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties. Biomacromol 13(12):4081–4088CrossRefGoogle Scholar
  26. Hult EL, Koivu K, Asikkala J, Ropponen J, Wrigstedt P, Sipilä J, Poppius-Levlin K (2013) Esterified lignin coating as water vapor and oxygen barrier for fiber-based packaging. Holzforschung 67(8):899–905CrossRefGoogle Scholar
  27. Johansson K, Winestrand S, Johansson C, Järnström L, Jönsson LJ (2012) Oxygen-scavenging Coatings and Films Based on Lignosulfonates and Laccase. J Biotechnol 161(1):14–18CrossRefGoogle Scholar
  28. Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40:2913–2920Google Scholar
  29. Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18(5):1175–1200Google Scholar
  30. Koivu KAY, Sadeghifar H, Nousiainen PA, Argyropoulos DS, Sipilä J (2016) Effect of fatty acid esterification on the thermal properties of softwood Kraft lignin. ACS Sustain Chem Eng 4(10):5238–5247CrossRefGoogle Scholar
  31. Kouisni L, Fang Y, Paleologou M, Ahvazi B, Hawari J, Zhang Y, Wang X-M (2011) Kraft lignin recovery and its use in the preparation of lignin-based phenol formaldehyde resins for plywood. Cellul Chem Technol 45(7–8):515–520Google Scholar
  32. Li H, Sivasankarapillai G, McDonald AG (2015) Highly biobased thermally-stimulated shape memory copolymeric elastomers derived from lignin and glycerol-ADIPIC acid based hyperbranched prepolymer. Ind Crops Prod 67:143–154CrossRefGoogle Scholar
  33. Luo J-J, Lü Q-F (2015) Controllable preparation and heavy-metal-ion adsorption of lignosulfonate-polypyrrole composite nanosorbent. Polym Compos 36(8):1546–1556CrossRefGoogle Scholar
  34. Luo S, Cao J, McDonald AG (2017) Esterification of industrial lignin and its effect on the resulting poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or polypropylene blends. Ind Crops Prod 97:281–291CrossRefGoogle Scholar
  35. Mainka H, Täger O, Körner E, Hilfert L, Busse S, Edelmann FT, Herrmann AS (2015) Lignin—an alternative precursor for sustainable and cost-effective automotive carbon fiber. J Mater Res Technol 4(3):283–296CrossRefGoogle Scholar
  36. Meier JN, Fyles JW, MacKenzie AF, O’Halloran IP (1993) Effects of lignosulfonate-fertilizer applications on soil respiration and nitrogen dynamics. Can J Soil Sci 73(2):233–242CrossRefGoogle Scholar
  37. Nada AMA, El-Diwany AI, Elshafei AM (1989) Infrared and antimicrobial studies on different lignins. Acta Biotechnol 9(3):295–298CrossRefGoogle Scholar
  38. Olivares M, Guzmán JA, Natho A, Saavedra A (1988) Kraft lignin utilization in adhesives. Wood Sci Technol 22(2):157–165CrossRefGoogle Scholar
  39. Pawar SN, Venditti RA, Jameel H, Chang H-M, Ayoub A (2016) Engineering physical and chemical properties of softwood Kraft lignin by fatty acid substitution. Ind Crops Prod 89:128–134CrossRefGoogle Scholar
  40. Plank J (2004) Applications of biopolymers and other biotechnological products in building materials. Appl Microbiol Biotechnol 66(1):1–9CrossRefGoogle Scholar
  41. Qian Y, Qiu X, Zhu S (2015) Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens. Green Chem 17(1):320–324CrossRefGoogle Scholar
  42. Qiao W, Li S, Guo G, Han S, Ren S, Ma Y (2015) Synthesis and characterization of phenol-formaldehyde resin using enzymatic Hydrolysis lignin. J Ind Eng Chem 21:1417–1422CrossRefGoogle Scholar
  43. Rand DAJ, Boden DP, Lakshmi CS, Nelson RF, Prengaman RD (2002) Manufacturing and operational issues with lead-acid batteries. J Power Sources 107(2):280–300CrossRefGoogle Scholar
  44. Reknes IK (2013) Quality lignosulfonate for concrete. The Masterbuilder, 84–90Google Scholar
  45. Richter AP, Brown JS, Bharti B, Wang A, Gangwal S, Houck K, Cohen Hubal EA, Paunov VN, Stoyanov SD, Velev OD (2015) An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat Nanotechnol 10(9):817–823CrossRefGoogle Scholar
  46. Rodrigues AE (1995) Production of vanillin by oxidation of pine Kraft lignins with oxygen. Holzforschung 49(3):273–278CrossRefGoogle Scholar
  47. Saake B, Lehnen R (2012) Lignin, Ullmann’s encyclopaedia of industrial. Chemistry 21:21–36Google Scholar
  48. Saito T, Brown RH, Hunt MA, Pickel DL, Pickel JM, Messman JM, Baker FS, Keller M, Naskar AK (2012) Turning renewable resources into value-added polymer: development of lignin-based thermoplastic. Green Chem 14(12):3295–3303CrossRefGoogle Scholar
  49. Salvesen JR, Brink DL, Diddams DG, Owzarski P, Owzarski W (1948) Process for making vanillin. United States Patent Office, 2,434,626Google Scholar
  50. Scripture EW, Heights S (1937) Indurating composition for concrete. United States Patent Office, 2,081,642Google Scholar
  51. Shakeri A, Rad SM, Ghasemian A (2009) Oxidative production of vanillin from industrial lignin using oxygen and nitrobenzene: a comparative study. Int J Allied Sci 2(24):1165–1171Google Scholar
  52. Sjoblom J (2001) Encyclopedic handbook of emulsion technology. CRC PressGoogle Scholar
  53. Tarabanko VE, Petukhov DV, Selyutin GE (2004) New mechanism for the catalytic oxidation of lignin to vanillin. Kinet Catal 45(4):569–577CrossRefGoogle Scholar
  54. Thielemans W, Wool RP (2005) Lignin esters for use in unsaturated thermosets: lignin modification and solubility modeling. Biomacromol 6(4):1895–1905CrossRefGoogle Scholar
  55. Tran H, Vakkilainnen EK (2012) The Kraft chemical recovery process. TAPPI Kraft Recovery Course, pp 1–8Google Scholar
  56. Van Vliet D, Slaghek T, Giezen C, Haaksman I (2016) Lignin as a green alternative for bitumen. Proceedings of E&E congress 2016—6th Eurasphalt Eurobitume CongressGoogle Scholar
  57. Vartiainen J, Vähä-Nissi M, Harlin A (2014) Biopolymer films and coatings in packaging applications—a review of recent developments. Mater Sci Appl 5(10):708–718Google Scholar
  58. Vázquez G, González J, Freire S, Antorrena G (1997) Effect of chemical modification of lignin on the gluebond performance of lignin-phenolic resins. Biores Technol 60(3):191–198CrossRefGoogle Scholar
  59. With LBE, Boden DP (2008) Lead-acid battery expanders with improved life at high temperatures. United States Patent Application Publications, US2008/0305396 A1, 1, (19)Google Scholar
  60. Xie S, Li Q, Karki P, Zhou F, Yuan JS (2017) Lignin as renewable and superior asphalt binder modifier. ACS Sustain Chem Eng 5(4):2817–2823CrossRefGoogle Scholar
  61. Yang J, Wu JX, Lü QF, Lin TT (2014a) Facile preparation of lignosulfonate-graphene oxide-polyaniline ternary nanocomposite as an effective adsorbent for Pb(II) ions. ACS Sustain Chem Eng 2(5):1203–1211CrossRefGoogle Scholar
  62. Yang S, Wen J-L, Yuan T-Q, Sun R-C (2014b) Characterization and phenolation of biorefinery Technical lignins for lignin–phenol–formaldehyde resin adhesive synthesis. RSC Adv 4(101):57996–58004CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graz University of TechnologyGrazAustria

Personalised recommendations