Multi-level Memristive Memory for Neural Networks

  • Aidana Irmanova
  • Serikbolsyn Myrzakhmet
  • Alex Pappachen JamesEmail author
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 14)


Analog memory is of great importance in neuromorphic engineering as it enables scalable neural network design and energy efficient implementation of computationally expensive operations. With the advent of memristors, the realization of the analog memory became possible due to the intrinsic properties of memristors such as nanoscale size, non-volatility, and energy efficiency. In hardware implementations of neural networks, memristors store the values of synaptic weights and operate similarly to the synapses that are reinforced with the application of external stimuli. Memristors that are ideally continuum memories, currently are at the early stage of the development, which causes several issues in neuromorphic circuit design. Device level and architecture level issues force memory engineers to approach memristive memory design in different ways. In this chapter device-level problems: restricted number of resistance states, stochastic switching and architecture level problem: sneak paths will be discussed, and their state of the art solutions will be presented.


  1. 1.
    Amatllé i Llucià E (2017) Design of a multi-level memory cell with new emerging non-volatile memristive technology. B.S. thesis, Universitat Politècnica de CatalunyaGoogle Scholar
  2. 2.
    Ascoli A, Tetzlaff R, Menzal S (2018) Exploring the dynamics of real-world memristors on the basis of circuit theoretic model predictions. IEEE Circuits Syst Mag 18(2):48–76CrossRefGoogle Scholar
  3. 3.
    Cho B, Kim TW, Song S, Ji Y, Jo M, Hwang H, Jung GY, Lee T (2010) Rewritable switching of one diode-one resistor nonvolatile organic memory devices. Adv Mater 22(11):1228–1232CrossRefGoogle Scholar
  4. 4.
    Chua L (1971) Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5):507–519CrossRefGoogle Scholar
  5. 5.
    Chua L (2011) Resistance switching memories are memristors. Appl. Phys. A 102(4):765–783CrossRefGoogle Scholar
  6. 6.
    Deng Y, Huang P, Chen B, Yang X, Gao B, Wang J, Zeng L, Du G, Kang J, Liu X (2013) Rram crossbar array with cell selection device: A device and circuit interaction study. IEEE Trans. Electron Devices 60(2):719–726CrossRefGoogle Scholar
  7. 7.
    Fei W, Yu H, Zhang W, Yeo KS (2012) Design exploration of hybrid cmos and memristor circuit by new modified nodal analysis. IEEE Trans Very Large Scale Integr (VLSI) Syst 20(6), 1012–1025CrossRefGoogle Scholar
  8. 8.
    Hasan R, Taha TM, Yakopcic C (2017) On-chip training of memristor crossbar based multi-layer neural networks. Microelectron J 66:31–40CrossRefGoogle Scholar
  9. 9.
    Hu M, Strachan JP, Li Z, Grafals EM, Davila N, Graves C, Lam S, Ge N, Yang JJ, Williams RS (2016) Dot-product engine for neuromorphic computing: programming 1t1m crossbar to accelerate matrix-vector multiplication. In: Proceedings of the 53rd annual design automation conference. ACM (2016), p. 19Google Scholar
  10. 10.
    Hu S, Wu S, Jia W, Yu Q, Deng L, Fu YQ, Liu Y, Chen TP (2014) Review of nanostructured resistive switching memristor and its applications. Nanosci Nanotechnol Lett 6(9):729–757CrossRefGoogle Scholar
  11. 11.
    Irmanova A, James AP (2017) Multi-level memristive memory with resistive networks. In: 2017 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia). IEEE, pp. 69–72Google Scholar
  12. 12.
    Jo SH, Kim KH, Lu W (2009) High-density crossbar arrays based on a si memristive system. Nano Lett 9(2):870–874CrossRefGoogle Scholar
  13. 13.
    Kim H, Sah MP, Yang C, Chua LO (2010) Memristor-based multilevel memory. In: 2010 12th international workshop on Cellular nanoscale networks and their applications (CNNA). IEEE, pp 1–6Google Scholar
  14. 14.
    Kim KH, Gaba S, Wheeler D, Cruz-Albrecht JM, Hussain T, Srinivasa N, Lu W (2011) A functional hybrid memristor crossbar-array/cmos system for data storage and neuromorphic applications. Nano Lett 12(1):389–395CrossRefGoogle Scholar
  15. 15.
    Kim S, Jeong HY, Kim SK, Choi SY, Lee KJ (2011) Flexible memristive memory array on plastic substrates. Nano Lett 11(12):5438–5442CrossRefGoogle Scholar
  16. 16.
    Krestinskaya O, James AP, Chua LO (2018) Neuro-memristive circuits for edge computing: A review. arXiv:1807.00962 Google Scholar
  17. 17.
    Kuzum D, Jeyasingh RG, Lee B, Wong HSP (2011) Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett 12(5):2179–2186CrossRefGoogle Scholar
  18. 18.
    Lastras-Montaño MA, Cheng KT (2018) Resistive random-access memory based on ratioed memristors. Nat Electron 1(8):466CrossRefGoogle Scholar
  19. 19.
    Lastras-Montano MA, Ghofrani A, Cheng KT (2015) Architecting energy efficient crossbar-based memristive random-access memories. In: 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). IEEE, pp 1–6Google Scholar
  20. 20.
    Leon C (2015) Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2):319CrossRefGoogle Scholar
  21. 21.
    Li Y, Zhou YX, Xu L, Lu K, Wang ZR, Duan N, Jiang L, Cheng L, Chang TC, Chang KC et al (2016) Realization of functional complete stateful boolean logic in memristive crossbar. ACS Appl Mater Interfaces 8(50):34559–34567CrossRefGoogle Scholar
  22. 22.
    Manem H, Rose GS, He X, Wang W (2010) Design considerations for variation tolerant multilevel cmos/nano memristor memory. In: Proceedings of the 20th symposium on Great lakes symposium on VLSI. ACM, pp 287–292Google Scholar
  23. 23.
    Naous R, Al-Shedivat M, Salama KN (2016) Stochasticity modeling in memristors. IEEE Trans Nanotechnol 15(1):15–28CrossRefGoogle Scholar
  24. 24.
    Prezioso M, Merrikh-Bayat F, Hoskins B, Adam G, Likharev KK, Strukov DB (2015) Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550):61CrossRefGoogle Scholar
  25. 25.
    Rose, G.S.: Overview: Memristive devices, circuits and systems. In: Proceedings of 2010 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1955–1958 (2010)Google Scholar
  26. 26.
    Shaarawy N, Emara A, El-Naggar AM, Elbtity ME, Ghoneima M, Radwan AG (2018) Design and analysis of 2t2m hybrid cmos-memristor based rram. Microelectron J 73:75–85CrossRefGoogle Scholar
  27. 27.
    Snider G, Kuekes P, Williams RS (2004) Cmos-like logic in defective, nanoscale crossbars. Nanotechnology 15(8):881CrossRefGoogle Scholar
  28. 28.
    Soni R, Meuffels P, Staikov G, Weng R, Kügeler C, Petraru, A., Hambe, M., Waser, R., Kohlstedt, H.: On the stochastic nature of resistive switching in cu doped ge0. 3se0. 7 based memory devices. Journal of applied physics 110(5), 054509 (2011)CrossRefGoogle Scholar
  29. 29.
    Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453(7191):80CrossRefGoogle Scholar
  30. 30.
    Truong SN, Ham SJ, Min KS (2014) Neuromorphic crossbar circuit with nanoscale filamentary-switching binary memristors for speech recognition. Nanoscale Res Lett 9(1):629CrossRefGoogle Scholar
  31. 31.
    Wang C, He W, Tong Y, Zhang Y, Huang K, Song L, Zhong S, Ganeshkumar R, Zhao R (2017) Memristive devices with highly repeatable analog states boosted by graphene quantum dots. Small 13(20):1603435CrossRefGoogle Scholar
  32. 32.
    Wang X, Li S, Liu H, Zeng Z (2018) A compact scheme of reading and writing for memristor-based multivalued memory. IEEE Trans Comput-Aided Des Integr Circuits Syst 37(7):1505–1509CrossRefGoogle Scholar
  33. 33.
    Yanagida T, Nagashima K, Oka K, Kanai M, Klamchuen A, Park BH, Kawai T (2013) Scaling effect on unipolar and bipolar resistive switching of metal oxides. Sci Rep 3:1657CrossRefGoogle Scholar
  34. 34.
    Yang JJ, Zhang MX, Strachan JP, Miao F, Pickett MD, Kelley RD, Medeiros-Ribeiro G, Williams RS (2010) High switching endurance in tao x memristive devices. Appl Phys Lett 97(23):232102CrossRefGoogle Scholar
  35. 35.
    Zidan MA, Fahmy HAH, Hussain MM, Salama KN (2013) Memristor-based memory: the sneak paths problem and solutions. Microelectron J 44(2):176–183CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aidana Irmanova
    • 1
  • Serikbolsyn Myrzakhmet
    • 1
  • Alex Pappachen James
    • 1
    Email author
  1. 1.Nazabayev UniversityAstanaKazakhstan

Personalised recommendations