Memristors: Properties, Models, Materials

  • Olga Krestinskaya
  • Aidana Irmanova
  • Alex Pappachen JamesEmail author
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 14)


The practical realization of neuro-memristive systems requires highly accurate simulation models, robust devices and validations on device characteristics. This chapter covers the basics of memristor characteristics, models and a succinct review of practically realized memristive devices. Memristors represent a class of two terminal resistive switching multi-state memory devices that can be compatible with existing integrated circuit technologies. The modeling of memristors for very large scale simulations requires to accurately capture process variations and other non-idealities from real devices for ensuring the validity of deep neural network architecture designs with memristors.


  1. 1.
    Abunahla H, Jaoude MA, O’Kelly CJ, Halawani Y, Al-Qutayri M, Al-Sarawi SF, Mohammad B (2018) Switching characteristics of microscale unipolar pd/hf/hfo2/pd memristors. Microelectron Eng 185:35–42CrossRefGoogle Scholar
  2. 2.
    Ageev O, Blinov YF, Ilin O, Kolomiitsev A, Konoplev B, Rubashkina M, Smirnov V, Fedotov A (2013) Memristor effect on bundles of vertically aligned carbon nanotubes tested by scanning tunnel microscopy. Tech Phys 58(12):1831–1836CrossRefGoogle Scholar
  3. 3.
    Åkerman J (2005) Toward a universal memory. Science 308(5721):508–510CrossRefGoogle Scholar
  4. 4.
    Al-Shedivat M, Naous R, Cauwenberghs G, Salama KN (2015) Memristors empower spiking neurons with stochasticity. IEEE J Emerg Sel Top Circuits Syst 5(2):242–253CrossRefGoogle Scholar
  5. 5.
    Amer S, Sayyaparaju S, Rose GS, Beckmann K, Cady NC (2017) A practical hafnium-oxide memristor model suitable for circuit design and simulation. In: 2017 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–4Google Scholar
  6. 6.
    Ascoli A, Corinto F, Tetzlaff R (2016) A class of versatile circuits, made up of standard electrical components, are memristors. Int J Circuit Theory Appl 44(1):127–146CrossRefGoogle Scholar
  7. 7.
    Ascoli A, Tetzlaff R, Biolek Z, Kolka Z, Biolkova V, Biolek D (2015) The art of finding accurate memristor model solutions. IEEE J Emerg Sel Top Circuits Syst 5(2):133–142CrossRefGoogle Scholar
  8. 8.
    Bashara N, Nielsen P (1963) Memory effects in thin film negative resistance structures. In: Annual report 1963 conference on electrical insulation. IEEE, pp 29–32Google Scholar
  9. 9.
    Bayat FM, Hoskins B, Strukov DB (2015) Phenomenological modeling of memristive devices. Appl Phys A 118(3):779–786CrossRefGoogle Scholar
  10. 10.
    Beck A, Bednorz J, Gerber C, Rossel C, Widmer D (2000) Reproducible switching effect in thin oxide films for memory applications. Appl Phys Lett 77(1):139–141CrossRefGoogle Scholar
  11. 11.
    Berdan R, Lim C, Khiat A, Papavassiliou C, Prodromakis T (2014) A memristor spice model accounting for volatile characteristics of practical ReRAM. IEEE Electron Device Lett 35(1):135–137CrossRefGoogle Scholar
  12. 12.
    Berdan R, Prodromakis T, Khiat A, Salaoru I, Toumazou C, Perez-Diaz F, Vasilaki E (2013) Temporal processing with volatile memristors. In: 2013 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 425–428Google Scholar
  13. 13.
    Berdan R, Vasilaki E, Khiat A, Indiveri G, Serb A, Prodromakis T (2016) Emulating short-term synaptic dynamics with memristive devices. Sci Rep 6:18639CrossRefGoogle Scholar
  14. 14.
    Berzina T, Smerieri A, Bernabò M, Pucci A, Ruggeri G, Erokhin V, Fontana M (2009) Optimization of an organic memristor as an adaptive memory element. J Appl Phys 105(12):124515CrossRefGoogle Scholar
  15. 15.
    Biolek D, Biolek Z, Biolkova V, Kolka Z (2015) Reliable modeling of ideal generic memristors via state-space transformation. Radioengineering 24(2):393–407CrossRefGoogle Scholar
  16. 16.
    Biolek D, Kolka Z, Biolková V, Biolek Z, Potrebić M, Tošić D (2018) Modeling and simulation of large memristive networks. Int J Circuit Theory Appl 46(1):50–65CrossRefGoogle Scholar
  17. 17.
    Biolek Z, Biolek D, Biolkova V (2009) SPICE model of memristor with nonlinear dopant drift. Radioengineering 18(2)Google Scholar
  18. 18.
    Bruce J, Hickling A (1939) Electrical conduction of commercial boron crystals. Trans Faraday Soc 35:1436–1439CrossRefGoogle Scholar
  19. 19.
    Campbell KA (2015) Carbon-chalcogenide variable resistance memory device. US Patent 9,118,006Google Scholar
  20. 20.
    Campbell KA (2017) Self-directed channel memristor for high temperature operation. Microelectron J 59:10–14CrossRefGoogle Scholar
  21. 21.
    Chang T, Jo SH, Kim KH, Sheridan P, Gaba S, Lu W (2011) Synaptic behaviors and modeling of a metal oxide memristive device. Appl Phys A 102(4):857–863CrossRefGoogle Scholar
  22. 22.
    Chang YF, Fowler B, Chen YC, Lee JC (2016) Proton exchange reactions in siox-based resistive switching memory: review and insights from impedance spectroscopy. Prog Solid State Chem 44(3):75–85CrossRefGoogle Scholar
  23. 23.
    Chanthbouala A, Garcia V, Cherifi RO, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur ND et al (2012) A ferroelectric memristor. Nat Mater 11(10):860CrossRefGoogle Scholar
  24. 24.
    Chen Y, Liu G, Wang C, Zhang W, Li RW, Wang L (2014) Polymer memristor for information storage and neuromorphic applications. Mater Horiz 1(5):489–506CrossRefGoogle Scholar
  25. 25.
    Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519CrossRefGoogle Scholar
  26. 26.
    Chua L (2011) Resistance switching memories are memristors. Appl Phys A 102(4):765–783CrossRefzbMATHGoogle Scholar
  27. 27.
    Chua L (2018) Five non-volatile memristor enigmas solved. Appl Phys A 124(8):563CrossRefGoogle Scholar
  28. 28.
    Dorosheva IB, Vokhmintsev AS, Kamalov RV, Gryaznov AO, Weinstein IA (2018) Oxide layer thickness effects on the resistance switching characteristics of ti/tio 2-nt/au structure. In: 2018 Ural symposium on biomedical engineering, radioelectronics and information technology (USBEREIT). IEEE, pp 279–282Google Scholar
  29. 29.
    Edwards AH, Barnaby HJ, Campbell KA, Kozicki MN, Liu W, Marinella MJ (2015) Reconfigurable memristive device technologies. Proc IEEE 103(7):1004–1033CrossRefGoogle Scholar
  30. 30.
    Engel B, Akerman J, Butcher B, Dave R, DeHerrera M, Durlam M, Grynkewich G, Janesky J, Pietambaram S, Rizzo N et al (2005) A 4-mb toggle mram based on a novel bit and switching method. IEEE Trans Magn 41(1):132–136CrossRefGoogle Scholar
  31. 31.
    Eshraghian JK, Cho K, Iu HHC, Fernando T, Iannella N, Kang S, Eshraghian K (2017) Maximization of crossbar array memory using fundamental memristor theory. IEEE Trans Circuits Syst II: Express Briefs 64(12):1402–1406. Scholar
  32. 32.
    Eshraghian JK, Iu HH, Fernando T, Yu D, Li Z (2016) Modelling and characterization of dynamic behavior of coupled memristor circuits. In: 2016 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 690–693 (2016)Google Scholar
  33. 33.
    Eshraghian K, Kavehei O, Cho KR, Chappell JM, Iqbal A, Al-Sarawi SF, Abbott D (2012) Memristive device fundamentals and modeling: applications to circuits and systems simulation. Proc IEEE 100(6):1991–2007CrossRefGoogle Scholar
  34. 34.
    Ferreira AP, Zhou M, Bock S, Childers B, Melhem R., Mossé, D (2010) Increasing pcm main memory lifetime. In: Proceedings of the conference on design, automation and test in Europe. European Design and Automation Association, pp 914–919Google Scholar
  35. 35.
    García-Redondo F, Gowers RP, Crespo-Yepes A, López-Vallejo M, Jiang L (2016) Spice compact modeling of bipolar/unipolar memristor switching governed by electrical thresholds. IEEE Trans Circuits Syst I: Regul Pap 63(8):1255–1264CrossRefMathSciNetGoogle Scholar
  36. 36.
    García-Redondo F, López-Vallejo M, Ituero P (2014) Building memristor applications: From device model to circuit design. IEEE Trans Nanotechnol 13(6):1154–1162CrossRefGoogle Scholar
  37. 37.
    Garda B, Ogorzałek M, Kasiliski K, Galias Z (2017) Studies of dynamics of memristor-based memory cells. In: 2017 IEEE 8th Latin American symposium on circuits & systems (LASCAS). IEEE, pp 1–4Google Scholar
  38. 38.
    Ghenzi N, Sánchez M, Gomez-Marlasca F, Levy P, Rozenberg M (2010) Hysteresis switching loops in ag-manganite memristive interfaces. J Appl Phys 107(9):093719CrossRefGoogle Scholar
  39. 39.
    Ghoneim MT, Zidan MA, Alnassar MY, Hanna AN, Kosel J, Salama KN, Hussain MM (2015) Thin pzt-based ferroelectric capacitors on flexible silicon for nonvolatile memory applications. Adv Electron Mater 1(6):1500045CrossRefGoogle Scholar
  40. 40.
    Guan X, Yu S, Wong HP et al (2012) A spice compact model of metal oxide resistive switching memory with variations. IEEE electron device letters 33(10):1405CrossRefGoogle Scholar
  41. 41.
    Hatem FO, Ho PW, Kumar TN, Almurib HA (2015) Modeling of bipolar resistive switching of a nonlinear mism memristor. Semicond Sci Technol 30(11):115009CrossRefGoogle Scholar
  42. 42.
    He C, Li J, Wu X, Chen P, Zhao J, Yin K, Cheng M, Yang W, Xie G, Wang D et al (2013) Tunable electroluminescence in planar graphene/sio2 memristors. Adv Mater 25(39):5593–5598CrossRefGoogle Scholar
  43. 43.
    He W, Sun H, Zhou Y, Lu K, Xue K, Miao X (2017) Customized binary and multi-level hfo 2- x-based memristors tuned by oxidation conditions. Sci Rep 7(1):10070CrossRefGoogle Scholar
  44. 44.
    Hickmott T (1962) Low-frequency negative resistance in thin anodic oxide films. J Appl Phys 33(9):2669–2682CrossRefGoogle Scholar
  45. 45.
    Hossein-Babaei F, Alaei-Sheini N (2016) Electronic conduction in ti/poly-tio 2/ti structures. Sci Rep 6:29624CrossRefGoogle Scholar
  46. 46.
    Hou P, Wang J, Zhong X, Wu Y (2016) A ferroelectric memristor based on the migration of oxygen vacancies. RSC Adv 6(59):54113–54118CrossRefGoogle Scholar
  47. 47.
    Hsieh CC, Roy A, Chang YF, Shahrjerdi D, Banerjee SK (2016) A sub-1-volt analog metal oxide memristive-based synaptic device with large conductance change for energy-efficient spike-based computing systems. Appl Phys Lett 109(22):223501CrossRefGoogle Scholar
  48. 48.
    Hu M, Li H, Chen Y, Wang X, Pino RE (2011) Geometry variations analysis of tio 2 thin-film and spintronic memristors. In: 2011 16th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, pp 25–30 (2011)Google Scholar
  49. 49.
    Hu S, Wu S, Jia W, Yu Q, Deng L, Fu YQ, Liu Y, Chen TP (2014) Review of nanostructured resistive switching memristor and its applications. Nanosci Nanotechnol Lett 6(9):729–757CrossRefGoogle Scholar
  50. 50.
    Hu Z, Li Q, Li M, Wang Q, Zhu Y, Liu X, Zhao X, Liu Y, Dong S (2013) Ferroelectric memristor based on pt/bifeo3/nb-doped srtio3 heterostructure. Applied Physics Letters 102(10):102901CrossRefGoogle Scholar
  51. 51.
    Huang YH, Hsieh TE (2015) Effective thermal parameters of chalcogenide thin films and simulation of phase-change memory. Int J Thermal Sci 87:207–214CrossRefGoogle Scholar
  52. 52.
    Ielmini D, Lavizzari S, Sharma D, Lacaita AL (2007) Physical interpretation, modeling and impact on phase change memory (pcm) reliability of resistance drift due to chalcogenide structural relaxation. In: IEEE international electron devices meeting, IEDM 2007. IEEE, pp 939–942 (2007)Google Scholar
  53. 53.
    James AP (2018) Memristor and memristive neural networksGoogle Scholar
  54. 54.
    Jeon Y, Foltin M (2018) Memristor memory with volatile and non-volatile states. US Patent App. 10/056,140Google Scholar
  55. 55.
    Joglekar YN, Wolf SJ (2009) The elusive memristor: properties of basic electrical circuits. Eur J Phys 30(4):661CrossRefzbMATHGoogle Scholar
  56. 56.
    Johnson S, Sundararajan A, Hunley D, Strachan D (2010) Memristive switching of single-component metallic nanowires. Nanotechnology 21(12):125204CrossRefGoogle Scholar
  57. 57.
    Kang E, Neoh K, Tan K (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23(2):277–324CrossRefGoogle Scholar
  58. 58.
    Kavehei, O., Cho, K., Lee, S., Kim, S.J., Al-Sarawi, S., Abbott, D., Eshraghian, K.: Fabrication and modeling of ag/tio 2/ito memristor. In: Circuits and Systems (MWSCAS), 2011 IEEE 54th International Midwest Symposium on, pp. 1–4. IEEE (2011)Google Scholar
  59. 59.
    Keshmiri V (2014) A study of the memristor models and applicationsGoogle Scholar
  60. 60.
    Kikuchi M, Saito M, Okushi H, Matsuda A (1971) Polarized (letter 8) memory in cdse point contact diodes. Solid State Commun 9(10):705–707CrossRefGoogle Scholar
  61. 61.
    Kim D, Lu H, Ryu S, Bark CW, Eom CB, Tsymbal E, Gruverman A (2012) Ferroelectric tunnel memristor. Nano Lett 12(11):5697–5702CrossRefGoogle Scholar
  62. 62.
    Kim H, Sah MP, Yang C, Cho S, Chua LO (2012) Memristor emulator for memristor circuit applications. IEEE Trans Circuits Syst I: Regul Pap 59(10):2422–2431CrossRefMathSciNetGoogle Scholar
  63. 63.
    Kim S, Chang YF, Park BG (2017) Understanding rectifying and nonlinear bipolar resistive switching characteristics in ni/sinx/p-si memory devices. RSC Adv 7(29):17882–17888CrossRefGoogle Scholar
  64. 64.
    Kim S, Jung S, Kim MH, Chen YC, Chang YF, Ryoo KC, Cho S, Lee JH, Park BG (2018) Scaling effect on silicon nitride memristor with highly doped si substrate. Small 14(19):1704062CrossRefGoogle Scholar
  65. 65.
    Kim S, Kim H, Hwang S, Kim MH, Chang YF, Park BG (2017) Analog synaptic behavior of a silicon nitride memristor. ACS Appl Mater Interfaces 9(46):40420–40427CrossRefGoogle Scholar
  66. 66.
    Krestinskaya O, Dolzhikova I, James AP (2018) Hierarchical temporal memory using memristor networks: a survey. IEEE Trans Emerg Top Comput Intell 2(5):380–395. Scholar
  67. 67.
    Krestinskaya O, James AP, Chua LO (2018) Neuro-memristive circuits for edge computing: a review. arXiv:1807.00962
  68. 68.
    Krestinskaya O, Salama KN, James AP (2018) Learning in memristive neural network architectures using analog backpropagation circuits. IEEE Trans Circuits Syst I: Regul PapGoogle Scholar
  69. 69.
    Kumar S, Davila N, Wang Z, Huang X, Strachan JP, Vine D, Kilcoyne AD, Nishi Y, Williams RS (2017) Spatially uniform resistance switching of low current, high endurance titanium-niobium-oxide memristors. Nanoscale 9(5):1793–1798CrossRefGoogle Scholar
  70. 70.
    Kvatinsky S, Belousov D, Liman S, Satat G, Wald N, Friedman EG, Kolodny A, Weiser UC (2014) Magic-memristor-aided logic. IEEE Trans Circuits Syst II: Express Briefs 61(11):895–899CrossRefGoogle Scholar
  71. 71.
    Kvatinsky S, Friedman EG, Kolodny A, Weiser UC (2013) Team: threshold adaptive memristor model. IEEE Trans Circuits Syst I: Regul Pap 60(1):211–221. Scholar
  72. 72.
    Kvatinsky S, Ramadan M, Friedman EG, Kolodny A (2015) Vteam: a general model for voltage-controlled memristors. IEEE Trans Circuits Syst II: Express Briefs 62(8):786–790CrossRefGoogle Scholar
  73. 73.
    Laiho M, Hasler JO, Zhou J, Du C, Lu W, Lehtonen E, Poikonen JH (2015) Fpaa/memristor hybrid computing infrastructure. IEEE Trans Circuits Syst I: Regul Pap 62(3):906–915CrossRefMathSciNetGoogle Scholar
  74. 74.
    Laiho M, Lehtonen E, Russel A, Dudek P (2010) Memristive synapses are becoming reality. Neuromorphic Eng 10–12 (2010)Google Scholar
  75. 75.
    Li C, Hu M, Li Y, Jiang H, Ge N, Montgomery E, Zhang J, Song W, Dávila N, Graves CE et al (2018) Analogue signal and image processing with large memristor crossbars. Nat Electron 1(1):52CrossRefGoogle Scholar
  76. 76.
    Li Y, Zhong Y, Zhang J, Xu X, Wang Q, Xu L, Sun H, Miao X (2013) Intrinsic memristance mechanism of crystalline stoichiometric ge2sb2te5. Appl Phys Lett 103(4):043501CrossRefGoogle Scholar
  77. 77.
    Lian X, Gao F, Wan X, Yao J, Gong X, Guo Y, Tong Y (2018) Performance variability, switching mechanism, and physical model for oxide based memristor and rram device. In: 2018 IEEE international symposium on the physical and failure analysis of integrated circuits (IPFA). IEEE, pp 1–4Google Scholar
  78. 78.
    Liu SdQ, Wu N, Ignatiev A (2000) Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl Phys Lett 76(19), 2749–2751 (2000)Google Scholar
  79. 79.
    Lupo N, Pérez E, Wenger C, Maloberti F, Bonizzoni E (2018) Analysis of parasitic effects in filamentary-switching memristive memories using an approximated verilog-a memristor model. IEEE Trans Circuits Syst: Regul Pap IGoogle Scholar
  80. 80.
    Maan AK, Jayadevi DA, James AP (2017) A survey of memristive threshold logic circuits. IEEE transactions on neural networks and learning systems 28(8):1734–1746CrossRefMathSciNetGoogle Scholar
  81. 81.
    Martinsen ØG, Grimnes S, Lütken C, Johnsen G (2010) Memristance in human skin. J Phys Conf Ser 224, 012071. IOP PublishingGoogle Scholar
  82. 82.
    Maslova N, Khrapovitskaya Y, Sokolov I, Grishchenko Y, Mamichev D, Zanaveskin M (2015) Features of titanium oxide memristor fabrication by pulsed laser deposition. Physica Status Solidi (c) 12(1–2), 242–245 (2015)Google Scholar
  83. 83.
    Messaris I, Serb A, Stathopoulos S, Khiat A, Nikolaidis S, Prodromakis T (2018) A data-driven verilog-a reram model. IEEE Trans Comput-Aided Des Integr Circuits SystGoogle Scholar
  84. 84.
    Mladenov, V., Kirilov, S.: A memristor model with a modified window function and activation thresholds. In: 2018 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–5 (2018)Google Scholar
  85. 85.
    Model WAM The generalized metastable switch memristor modelGoogle Scholar
  86. 86.
    Molter TW, Nugent MA (2016) The generalized metastable switch memristor model. In: CNNA 2016; Proceedings of 15th international workshop on cellular nanoscale networks and their applications. VDE, pp 1–2 (2016)Google Scholar
  87. 87.
    Nafea SF, Dessouki AA, El-Rabaie S, Elnaghi BE, Ismail Y, Mostafa H (2018) An accurate model of domain-wall-based spintronic memristor. IntegrationGoogle Scholar
  88. 88.
    Naous R (2017) Von-neumann and beyond: Memristor architectures. Ph.D. thesisGoogle Scholar
  89. 89.
    Naous R, Al-Shedivat M, Salama KN (2016) Stochasticity modeling in memristors. IEEE Trans Nanotechnol 15(1):15–28CrossRefGoogle Scholar
  90. 90.
    Nielsen P, Bashara N (1964) The reversible voltage-induced initial resistance in the negative resistance sandwich structure. IEEE Trans Electron Dev 11(5):243–244CrossRefGoogle Scholar
  91. 91.
    Nugent MA, Molter TW (2014) Ahah computing-from metastable switches to attractors to machine learning. PloS one 9(2):e85175CrossRefGoogle Scholar
  92. 92.
    Ovshinsky SR (1968) Reversible electrical switching phenomena in disordered structures. Physical Review Letters 21(20):1450CrossRefGoogle Scholar
  93. 93.
    Park WI, Yoon JM, Park M, Lee J, Kim SK, Jeong JW, Kim K, Jeong HY, Jeon S, No KS et al (2012) Self-assembly-induced formation of high-density silicon oxide memristor nanostructures on graphene and metal electrodes. Nano Lett 12(3):1235–1240CrossRefGoogle Scholar
  94. 94.
    Pershin Y, Shevchenko S (2017) Computing with volatile memristors: an application of non-pinched hysteresis. Nanotechnology 28(7):075204CrossRefGoogle Scholar
  95. 95.
    Pickett MD, Strukov DB, Borghetti JL, Yang JJ, Snider GS, Stewart DR, Williams RS (2009) Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics 106(7):074508CrossRefGoogle Scholar
  96. 96.
    Prodromakis T, Peh BP, Papavassiliou C, Toumazou C (2011) A versatile memristor model with nonlinear dopant kinetics. IEEE Trans Electron Dev 58(9):3099–3105CrossRefGoogle Scholar
  97. 97.
    Radoi A, Dragoman M, Dragoman D (2011) Memristor device based on carbon nanotubes decorated with gold nanoislands. Appl Phys Lett 99(9):093102CrossRefGoogle Scholar
  98. 98.
    Raeis-Hosseini N, Lim S, Hwang H, Rho J (2018) Reliable ge2sb2te5-integrated high-density nanoscale conductive bridge random access memory using facile nitrogen-doping strategy. Adv Electron Mater 4(11):1800360CrossRefGoogle Scholar
  99. 99.
    Raymenants E, Vaysset A, Wan D, Manfrini M, Zografos O, Bultynck O, Doevenspeck J, Heyns M, Radu IP, Devolder T (2018) Chain of magnetic tunnel junctions as a spintronic memristor. Journal of Applied Physics 124(15):152116CrossRefGoogle Scholar
  100. 100.
    Rubi D, Kalstein A, Román W, Ghenzi N, Quinteros C, Mangano E, Granell P, Golmar F, Marlasca F, Suarez S et al (2015) Manganite based memristors: Influence of the electroforming polarity on the electrical behavior and radiation hardness. Thin Solid Films 583:76–80CrossRefGoogle Scholar
  101. 101.
    Salinga M, Kersting B, Ronneberger I, Jonnalagadda VP, Vu XT, Le Gallo M, Giannopoulos I, Cojocaru-Mirédin O, Mazzarello R, Sebastian A (2018) Monatomic phase change memory. Nat Mater 1Google Scholar
  102. 102.
    Samardzić N, Mionić M, Dakić B, Hofmann H, Dautović S, Stojanović G (2015) Analysis of quantized electrical characteristics of microscale tio 2 ink-jet printed memristor. IEEE Trans Electron Dev 62(6):1898–1904CrossRefGoogle Scholar
  103. 103.
    Sánchez-López C, Carro-Pérez I, Carbajal-Gómez VH, Carrasco-Aguilar MA, Morales-López FE (2018) Memristor emulator circuit design and applications. In: Memristor and memristive neural networks. InTechGoogle Scholar
  104. 104.
    Sbiaa R, Meng H, Piramanayagam S (2011) Materials with perpendicular magnetic anisotropy for magnetic random access memory. Physica Status Solidi (RRL)–Rapid Res Lett 5(12), 413–419 (2011)Google Scholar
  105. 105.
    Schenk T, Mueller S, Schroeder U, Materlik R, Kersch A, Popovici M, Adelmann C, Van Elshocht S, Mikolajick T (2013) Strontium doped hafnium oxide thin films: wide process window for ferroelectric memories. In: 2013 proceedings of the european solid-state device research conference (ESSDERC). IEEE, pp 260–263 (2013)Google Scholar
  106. 106.
    Secco J, Corinto F, Sebastian A (2018) Flux-charge memristor model for phase change memory. IEEE Trans Circuits Syst II: Express Briefs 65(1):111–114CrossRefGoogle Scholar
  107. 107.
    Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N, Stephenson G et al (2006) Ferroelectric thin films: Review of materials, properties, and applications. Journal of Applied Physics 100(5):051606CrossRefGoogle Scholar
  108. 108.
    Shahsavari M, Falez P, Boulet P (2016) Combining a volatile and nonvolatile memristor in artificial synapse to improve learning in spiking neural networks. In: 2016 IEEE/ACM international symposium on nanoscale architectures (NANOARCH). IEEE, pp 67–72 (2016)Google Scholar
  109. 109.
    Singh J, Raj B (2018) Comparative analysis of memristor models and memories designGoogle Scholar
  110. 110.
    Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453(7191):80CrossRefGoogle Scholar
  111. 111.
    Strukov DB, Williams RS (2009) Exponential ionic drift: fast switching and low volatility ofáthin-film memristors. Appl Phys A 94(3):515–519CrossRefGoogle Scholar
  112. 112.
    Sumi T, Moriwaki N, Nakane G, Nakakuma T, Judai Y, Uemoto Y, Nagano Y, Hayashi S, Azuma M, Fujii E et al (1994) A 256 kb nonvolatile ferroelectric memory at 3 v and 100 ns. In: Solid-state circuits conference. 1994 IEEE international digest of technical papers. 41st ISSCC. IEEE, pp 268–269Google Scholar
  113. 113.
    Wang X, Chen Y (2010) Spintronic memristor devices and application. In: Proceedings of the conference on design, automation and test in Europe. European Design and Automation Association, pp 667–672Google Scholar
  114. 114.
    Wang X, Chen Y, Wang A, Xi H, Zhu W, Li H, Liu H (2011) Magnetic tunnel junction and memristor apparatus. US Patent 7,898,844Google Scholar
  115. 115.
    Wang X, Chen Y, Xi H, Li H, Dimitrov D (2009) Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Dev Lett 30(3):294–297CrossRefGoogle Scholar
  116. 116.
    Wang X, Xu B, Chen L (2017) Efficient memristor model implementation for simulation and application. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 36(7):1226–1230CrossRefGoogle Scholar
  117. 117.
    Williams RS (2008) How we found the missing memristor. IEEE Spectr 45(12) (2008)Google Scholar
  118. 118.
    Yakopcic C, Taha TM, Subramanyam G, Pino RE (2013) Generalized memristive device spice model and its application in circuit design. IEEE Trans Comput-Aided Des Integr Circuits Syst 32(8):1201–1214CrossRefGoogle Scholar
  119. 119.
    Yakopcic C, Taha TM, Subramanyam G, Pino RE, Rogers S (2011) A memristor device model. IEEE electron device letters 32(10):1436–1438CrossRefGoogle Scholar
  120. 120.
    Yalon E, Gavrilov A, Cohen S, Mistele D, Meyler B, Salzman J, Ritter D (2012) Resistive switching in \(\backslash \)hbox \(\{\)HfO\(\}\) \_ \(\{\)2\(\}\) probed by a metal-insulator-semiconductor bipolar transistor. IEEE Electron Dev Lett 33(1):11–13CrossRefGoogle Scholar
  121. 121.
    Yang JJ, Pickett MD, Li X, Ohlberg DA, Stewart DR, Williams RS (2008) Memristive switching mechanism for metal/oxide/metal nanodevices. Nature nanotechnology 3(7):429CrossRefGoogle Scholar
  122. 122.
    Yesil A, Gül F, Babacan Y (2018) Emulator circuits and resistive switching parameters of memristor. In: Memristor and memristive neural networks. InTechGoogle Scholar
  123. 123.
    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K (2004) Giant room-temperature magnetoresistance in single-crystal fe/mgo/fe magnetic tunnel junctions. Nature materials 3(12):868CrossRefGoogle Scholar
  124. 124.
    Zhao Y, Fang C, Zhang X, Xu X, Gong T, Luo Q, Chen C, Liu Q, Lv H, Li Q et al (2018) A compact model for drift and diffusion memristor applied in neuron circuits design. IEEE Trans Electron Dev 99:1–7Google Scholar
  125. 125.
    Zhou F, Chang YF, Fowler B, Byun K.C Lee J (2015) Stabilization of multiple resistance levels by current-sweep in siox-based resistive switching memory 106, 063508Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Olga Krestinskaya
    • 1
  • Aidana Irmanova
    • 1
  • Alex Pappachen James
    • 1
    Email author
  1. 1.Nazarbayev UniversityAstanaKazakhstan

Personalised recommendations