Memristive Hierarchical Temporal Memory

  • Olga Krestinskaya
  • Irina Dolzhikova
  • Alex Pappachen JamesEmail author
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 14)


This chapter covers the memristive HTM implementations on mixed-signal and analog hardware. Most of the implemented memristive systems are based on modified HTM algorithm. The HTM is often used as a feature encoding and feature extraction tool, and these features are then used with conventional nearest neighbor method for classification.


  1. 1.
    Fan D, Sharad M, Sengupta A, Roy K (2016) Hierarchical temporal memory based on spin-neurons and resistive memory for energy-efficient brain-inspired computing. IEEE Trans Neural Netw Learn Syst 27(9):1907–1919MathSciNetCrossRefGoogle Scholar
  2. 2.
    Hawkins J, George D (2006) Hierarchical temporal memory: Concepts, theory and terminology. Technical report, NumentaGoogle Scholar
  3. 3.
    Hawkins J, Ahmad S, Dubinsky D (2010) Hierarchical temporal memory including htm cortical learning algorithms. Technical report, Numenta, Inc, Palto Alto.
  4. 4.
    Ibrayev T, Krestinskaya O, James AP (2017) Design and implication of a rule based weight sparsity module in htm spatial pooler. In: 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, pp 274–277Google Scholar
  5. 5.
    Ibrayev T, James AP, Merkel C, Kudithipudi D (2016) A design of htm spatial pooler for face recognition using memristor-cmos hybrid circuits. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, pp 1254–1257Google Scholar
  6. 6.
    Ibrayev T, Myrzakhan U, Krestinskaya O, Irmanova A, James AP (2018) On-chip face recognition system design with memristive hierarchical temporal memory. J Intell Fuzzy Syst 34(3):1393–1402CrossRefGoogle Scholar
  7. 7.
    Irmanova A, Ibrayev T, James AP (2017) Discrete-level memristive circuits for htm-based spatiotemporal data classification system. IET Cyber Phys Syst Theory Appl 3(1):34–43Google Scholar
  8. 8.
    James AP, Fedorova I, Ibrayev T, Kudithipudi D (2017) Htm spatial pooler with memristor crossbar circuits for sparse biometric recognition. IEEE Trans Biomed Circuits Syst 11(3):640–651CrossRefGoogle Scholar
  9. 9.
    James A, Ibrayev T, Krestinskaya O, Dolzhikova I (2018) Introduction to memristive htm circuits. In: Memristor and Memristive Neural Networks. InTechGoogle Scholar
  10. 10.
    Krestinskaya O, James AP (2018) Feature extraction without learning in an analog spatial pooler memristive-cmos circuit design of hierarchical temporal memory. Analog Integr Circuits Signal Process 95(3):457–465CrossRefGoogle Scholar
  11. 11.
    Krestinskaya O, Dolzhikova I, James AP (2018) Hierarchical temporal memory using memristor networks: a survey. IEEE Trans Emerg Top Comput Intell 2(5):380–395. Scholar
  12. 12.
    Krestinskaya O, Ibrayev T, James AP (2018) Hierarchical temporal memory features with memristor logic circuits for pattern recognition. IEEE Trans Comput Aided Des Integr Circuits Syst 37(6):1143–1156CrossRefGoogle Scholar
  13. 13.
    Krestinskaya O, James AP, Chua LO (2018) Neuro-memristive circuits for edge computing: a review. arXiv preprint arXiv:1807.00962
  14. 14.
    Lazzaro J, Ryckebusch S, Mahowald MA, Mead CA (1989) Winner-take-all networks of o (n) complexity. In: Advances in Neural Information Processing Systems, pp 703–711Google Scholar
  15. 15.
    Zyarah AM, Kudithipudi D (2015) Reconfigurable hardware architecture of the spatial pooler for hierarchical temporal memory. In: 2015 28th IEEE International System-on-Chip Conference (SOCC). IEEE, pp 143–153Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Olga Krestinskaya
    • 1
  • Irina Dolzhikova
    • 1
  • Alex Pappachen James
    • 1
    Email author
  1. 1.Nazarbayev UniversityAstanaKazakhstan

Personalised recommendations