Advertisement

HTM Theory

  • Yeldos Dauletkhanuly
  • Olga Krestinskaya
  • Alex Pappachen JamesEmail author
Chapter
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 14)

Abstract

This chapter presents the general background information about the Hierarchical Temporal Memory (HTM). HTM is a recently proposed cognitive learning algorithm that is intended to emulate the overall structural and functionality of the human neocortex responsible for the high-order functions such as cognition, learning and making predictions. The main properties of HTM is hierarchical structure, sparsity and modularity. HTM consists of two main parts: HTM Spatial Pooler (SP) and HTM Temporal Memory (TM). The HTM SP performs the encoding of the input data and produces sparse distributed representation (SDR) of the input pattern useful for visual data processing and classification tasks. The HTM TM detects the temporal changes in the input data and performs prediction making.

References

  1. 1.
    Ahmad S, Lewis M (2017) Temporal memory algorithm. Technical report, Numenta, IncGoogle Scholar
  2. 2.
    Cui Y, Ahmad S, Hawkins J (2017) The HTM spatial Pooler- a neocortical algorithm for online sparse distributed coding. Technical report, Numenta, IncGoogle Scholar
  3. 3.
    Fan D, Sharad M, Sengupta A, Roy K (2016) Hierarchical temporal memory based on spin-neurons and resistive memory for energy-efficient brain-inspired computing. IEEE Trans Neural Netw Learn Syst 27(9):1907–1919MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hawkins J (2004) On Intelligence. Griffin, MacmillanGoogle Scholar
  5. 5.
    Hawkins J (2016) Biological and machine intelligence. Numenta. http://numenta.com/biological-and-machine-intelligence/
  6. 6.
    Ahmad S, Hawkins J (2016) How do neurons operate on sparse distributed representations? A mathematical theory of sparsity, neurons and active dendrites. Technical report, Numenta, IncGoogle Scholar
  7. 7.
    Hawkins J, Ahmad S (2016) Why neurons have thousands of synapses, a theory of sequence memory in neocortex. Technical report, Numenta, IncGoogle Scholar
  8. 8.
    Hawkins J, Ahmad S, Dubinsky D (2010) Hierarchical temporal memory including HTM cortical learning algorithms. Techical report, Numenta, Inc, Palto Alto. http://www.numenta.com/htmoverview/education/HTM_CorticalLearningAlgorithms.pdf
  9. 9.
    Hawkins J, Ahmad S, Purdy S, Lavin A (2016) Biological and machine intelligence (bami). Initial online release 0.4Google Scholar
  10. 10.
    Ibrayev T, Krestinskaya O, James AP (2017) Design and implication of a rule based weight sparsity module in HTM spatial pooler. In: 24th IEEE international conference on electronics, circuits and systems (ICECS). IEEE, pp 274–277Google Scholar
  11. 11.
    Ibrayev T, Myrzakhan U, Krestinskaya O, Irmanova A, James AP (2018) On-chip face recognition system design with memristive hierarchical temporal memory. J Intell Fuzzy Syst 34(3):1393–1402CrossRefGoogle Scholar
  12. 12.
    James A, Ibrayev T, Krestinskaya O, Dolzhikova I (2018) Introduction to memristive HTM circuits. In: Memristor and memristive neural networks. InTechGoogle Scholar
  13. 13.
    Krestinskaya O, James AP (2018) Feature extraction without learning in an analog spatial pooler memristive-CMOS circuit design of hierarchical temporal memory. Analog Integr Circuits Signal Process 95(3):457–465CrossRefGoogle Scholar
  14. 14.
    Krestinskaya O, Dolzhikova I, James AP (2018) Hierarchical temporal memory using memristor networks: a survey. IEEE Trans Emerg Top Comput Intell 2(5):380–395.  https://doi.org/10.1109/TETCI.2018.2838124CrossRefGoogle Scholar
  15. 15.
    Krestinskaya O, Ibrayev T, James AP (2018) Hierarchical temporal memory features with memristor logic circuits for pattern recognition. IEEE Trans Comput-Aided Des Integr Circuits Syst 37(6):1143–1156CrossRefGoogle Scholar
  16. 16.
    Krestinskaya O, James AP, Chua LO (2018) Neuro-memristive circuits for edge computing: a review. arXiv:1807.00962
  17. 17.
    Lavin A, Ahmad S (2017) Sparse distributed representations. Technical report, Numenta, IncGoogle Scholar
  18. 18.
    Purdy S (2017) Encoding data for HTM systems. Technical report, Numenta, IncGoogle Scholar
  19. 19.
    Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3):206MathSciNetCrossRefGoogle Scholar
  20. 20.
    Webster D, Popper A (1992) The mammalian auditory pathway: neuroanatomy. Springer, New YorkCrossRefGoogle Scholar
  21. 21.
    Zyarah AM (2015) Design and analysis of a Re-configurable hierarchical temporal memory architecture. Technical report, Rochester institute of technologyGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yeldos Dauletkhanuly
    • 1
  • Olga Krestinskaya
    • 1
  • Alex Pappachen James
    • 1
    Email author
  1. 1.Nazarbayev UniversityAstanaKazakhstan

Personalised recommendations