Advertisement

Memristive Deep Convolutional Neural Networks

  • Olga Krestinskaya
  • Alex Pappachen JamesEmail author
Chapter
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 14)

Abstract

This chapter covers the implementation of deep learning neural networks and memristive systems. In particular, deep memristive convolutional neural network (CNN) implementation is illustrated. In addition, the main issues and challenges of deep neural network implementation are discussed.

References

  1. 1.
    CireşAn D, Meier U, Masci J, Schmidhuber J (2012) Multi-column deep neural network for traffic sign classification. Neural Netw 32:333–338CrossRefGoogle Scholar
  2. 2.
    Courbariaux M, Bengio Y, David JP (2015) Binaryconnect: training deep neural networks with binary weights during propagations. In: Advances in neural information processing systems, pp 3123–3131Google Scholar
  3. 3.
    Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning, vol 1. MIT press, CambridgezbMATHGoogle Scholar
  4. 4.
    Hwang K, Sung W (2014) Fixed-point feedforward deep neural network design using weights \(+\)1, 0, and \(-\)1. In: 2014 IEEE workshop on signal processing systems (SiPS). IEEE, pp 1–6Google Scholar
  5. 5.
    Krestinskaya O, James AP, Chua LO (2018) Neuro-memristive circuits for edge computing: a review. arXiv:1807.00962
  6. 6.
    Krestinskaya O, Salama KN, James AP (2018) Analog backpropagation learning circuits for memristive crossbar neural networks. In: 2018 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1–5Google Scholar
  7. 7.
    Krestinskaya O, Salama KN, James AP (2018) Learning in memristive neural network architectures using analog backpropagation circuits. IEEE Trans Circuits Syst I: Regul PapGoogle Scholar
  8. 8.
    LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436CrossRefGoogle Scholar
  9. 9.
    Li C, Hu M, Li Y, Jiang H, Ge N, Montgomery E, Zhang J, Song W, Dávila N, Graves CE et al (2018) Analogue signal and image processing with large memristor crossbars. Nat Electron 1(1):52CrossRefGoogle Scholar
  10. 10.
    Ovtcharov K, Ruwase O, Kim JY, Fowers J, Strauss K, Chung ES (2015) Accelerating deep convolutional neural networks using specialized hardware. Microsoft Res Whitepaper 2(11)Google Scholar
  11. 11.
    Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117CrossRefGoogle Scholar
  12. 12.
    Wijesinghe P, Ankit A, Sengupta A, Roy K (2018) An all-memristor deep spiking neural computing system: a step toward realizing the low-power stochastic brain. IEEE Trans Emerg Top Comput Intell 2(5):345–358.  https://doi.org/10.1109/TETCI.2018.2829924CrossRefGoogle Scholar
  13. 13.
    Yakopcic C, Alom MZ, Taha TM (2016) Memristor crossbar deep network implementation based on a convolutional neural network. In: 2016 International joint conference on neural networks (IJCNN), pp 963–970.  https://doi.org/10.1109/IJCNN.2016.7727302
  14. 14.
    Yakopcic C, Alom MZ, Taha TM (2017) Extremely parallel memristor crossbar architecture for convolutional neural network implementation. In: 2017 International joint conference on neural networks (IJCNN). IEEE, pp 1696–1703Google Scholar
  15. 15.
    Zhang Y, Wang X, Friedman EG (2018) Memristor-based circuit design for multilayer neural networks. IEEE Trans Circuits Syst I: Regul Pap 65(2):677–686CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Nazarbayev UniversityAstanaKazakhstan

Personalised recommendations