Advertisement

Introduction to Neuro-Memristive Systems

  • Alex Pappachen JamesEmail author
Chapter
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 14)

Abstract

This chapter provides with an overview of the motivation and direction for neuro-memristive computing hardware. The emergence of deep learning technologies has been largely attributed to the convergence in the growth on computational capabilities, and that of the large availability of the data resulting from Internet of things applications. The need to have higher computational capabilities enforces the need to have low power solutions and smaller devices. However, the physical limits of CMOS device and process technologies pushed us in the recent years to think beyond CMOS era computing. A promising solutions is a class of emerging devices called memristors, that can naturally blend as a viable computing device to implement neural computations that extend the capabilities of exiting computing hardware. The full potential of neuro-memristive systems is yet to be completely realised and could provide ways to develop higher level of socially engineered machine cognition.

References

  1. 1.
    Agrawal A, Roy K (2019) Mimicking leaky-integrate-fire spiking neuron using automotion of domain walls for energy-efficient brain-inspired computing. IEEE Trans Magn 55(1):1–7CrossRefGoogle Scholar
  2. 2.
    Akinaga H, Shima H (2010) Resistive random access memory (reram) based on metal oxides. Proc IEEE 98(12):2237–2251CrossRefGoogle Scholar
  3. 3.
    Amit DJ, Amit DJ (1992) Modeling brain function: the world of attractor neural networks. Cambridge University Press, CambridgezbMATHGoogle Scholar
  4. 4.
    Bourzac K (2017) Has intel created a universal memory technology?[news]. IEEE Spectr 54(5):9–10CrossRefGoogle Scholar
  5. 5.
    Chua L (2018) Five non-volatile memristor enigmas solved. Appl Phys A 124(8):563CrossRefGoogle Scholar
  6. 6.
    Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680Google Scholar
  7. 7.
    Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning, vol 1. MIT Press, CambridgezbMATHGoogle Scholar
  8. 8.
    Grandison T, Sloman M (2000) A survey of trust in internet applications. IEEE Commun Surv Tutor 3(4):2–16CrossRefGoogle Scholar
  9. 9.
    Guo X, Ipek E, Soyata T (2010) Resistive computation: avoiding the power wall with low-leakage, STT-MRAM based computing. In: ACM SIGARCH computer architecture news, vol 38. ACM, pp 371–382Google Scholar
  10. 10.
    Hurst S (1969) An introduction to threshold logic: a survey of present theory and practice. Radio Electron Eng 37(6):339–351CrossRefGoogle Scholar
  11. 11.
    Jeong H, Shi L (2018) Memristor devices for neural networks. J Phys D: Appl Phys 52(2):023003CrossRefGoogle Scholar
  12. 12.
    Krestinskaya O, Dolzhikova I, James AP (2018) Hierarchical temporal memory using memristor networks: a survey. IEEE Trans Emerg Top Comput Intell 2(5):380–395.  https://doi.org/10.1109/TETCI.2018.2838124CrossRefGoogle Scholar
  13. 13.
    Krestinskaya O, James AP, Chua LO (2019) Neuro-memristive circuits for edge computing: a review. IEEE Trans Neural Networks Learn Syst ( https://doi.org/10.1109/TNNLS.2019.2899262). arXiv:1807.00962
  14. 14.
    Krestinskaya O, Salama KN, James AP (2018) Learning in memristive neural network architectures using analog backpropagation circuits. IEEE Trans Circuits Syst I: Regul Pap 1–14.  https://doi.org/10.1109/TCSI.2018.2866510CrossRefGoogle Scholar
  15. 15.
    Krestinskaya O, Bakambekova A, James AP (2019) Amsnet: analog memristive system architecture for mean-pooling with dropout convolutional neural network. In: IEEE international conference on artificial intelligence circuits and systemsGoogle Scholar
  16. 16.
    Li Y, Wang Z, Midya R, Xia Q, Yang JJ (2018) Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J Phys D: Appl Phys 51(50):503002CrossRefGoogle Scholar
  17. 17.
    Liao Q, Poggio T (2016) Bridging the gaps between residual learning, recurrent neural networks and visual cortex. arXiv:1604.03640
  18. 18.
    Lippmann R (1987) An introduction to computing with neural nets. IEEE ASSP Mag 4(2):4–22CrossRefGoogle Scholar
  19. 19.
    Ma J, Tang J (2017) A review for dynamics in neuron and neuronal network. Nonlinear Dyn 89(3):1569–1578MathSciNetCrossRefGoogle Scholar
  20. 20.
    Maan AK, Jayadevi DA, James AP (2017) A survey of memristive threshold logic circuits. IEEE Trans Neural Netw Learn Syst 28(8):1734–1746MathSciNetCrossRefGoogle Scholar
  21. 21.
    McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133MathSciNetCrossRefGoogle Scholar
  22. 22.
    Medsker L, Jain LC (1999) Recurrent neural networks: design and applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  23. 23.
    Mhaskar H, Liao Q, Poggio T (2016) Learning functions: when is deep better than shallow. arXiv:1603.00988
  24. 24.
    Nili H, Adam GC, Hoskins B, Prezioso M, Kim J, Mahmoodi MR, Bayat FM, Kavehei O, Strukov DB (2018) Hardware-intrinsic security primitives enabled by analogue state and nonlinear conductance variations in integrated memristors. Nat Electron 1(3):197CrossRefGoogle Scholar
  25. 25.
    Raghu M, Poole B, Kleinberg J, Ganguli S, Dickstein JS (2017) On the expressive power of deep neural networks. In: Proceedings of the 34th international conference on machine learning-volume 70. pp 2847–2854. https://www.JMLR.org
  26. 26.
    Rajendran J, Rose GS, Karri R, Potkonjak M (2012) Nano-ppuf: a memristor-based security primitive. In: IEEE computer society annual symposium on VLSI (ISVLSI). IEEE, pp 84–87Google Scholar
  27. 27.
    Schlkopf B, Smola AJ, Bach F (2018) Learning with kernels: support vector machines, regularization, optimization, and beyondGoogle Scholar
  28. 28.
    Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117CrossRefGoogle Scholar
  29. 29.
    Serrano-Gotarredona T, Masquelier T, Prodromakis T, Indiveri G, Linares-Barranco B (2013) STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front Neurosci 7:2CrossRefGoogle Scholar
  30. 30.
    Sicari S, Rizzardi A, Grieco LA, Coen-Porisini A (2015) Security, privacy and trust in internet of things: the road ahead. Comput Netw 76:146–164CrossRefGoogle Scholar
  31. 31.
    Smagulova K, Krestinskaya O, James AP (2018) A memristor-based long short term memory circuit. Analog Integr Circuits Signal Process 95(3):467–472CrossRefGoogle Scholar
  32. 32.
    Talati N, Ha H, Perach B, Ronen R, Kvatinsky S (2019) Concept: a column oriented memory controller for efficient memory and PIM operations in RRAM. IEEE MicroGoogle Scholar
  33. 33.
    Ujfalussy BB, Makara JK, Branco T, Lengyel M (2015) Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits. Elife 4:e10056CrossRefGoogle Scholar
  34. 34.
    Varga A, Moore R (1990) Hidden Markov model decomposition of speech and noise. In: 1990 International conference on acoustics, speech, and signal processing, ICASSP-90. IEEE, pp 845–848Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Nazarbayev UniversityAstanaKazakhstan

Personalised recommendations