Advertisement

Genetic Basis of Dental Caries and Periapical Pathology

  • Alexandre Rezende Vieira
Chapter

Abstract

Dental caries is a disease consequence of continued localized mineral loss from the dental enamel. As it progresses, subclinical mineral losses become visible (white spot lesions) and eventually unsupported enamel collapses (cavitates). Historically caries has been treated by a classical surgical approach implemented by dentists over the decades. As care shifts toward a holistic medical approach, one challenge in communicating the need for this shift is that we use the same term “dental caries” to indicate both the disease and its consequences: the carious lesions. Dental caries requires a susceptible host. The factors involved with the host include the status of the dentition, saliva and immune response, and behaviors. These factors are influenced by genetics and dental caries can be said to have a multifactorial or complex mode of inheritance, with environmental factors likely overturning any individual susceptibility to the condition.

Keywords

Dental caries Tooth demineralization Dental pulp diseases Pulpitis Tooth, nonvital Toothache Tooth loss Genetics Heredity 

References

  1. Anjomshoaa I, Briseño-Ruiz J, Deeley K, Poletta FA, Mereb JC, Leite AL, Barreta PA, Silva TL, Dizak P, Ruff T, Patir A, Koruyucu M, Abbasoğlu Z, Casado PL, Brown A, Zaky SH, Bayram M, Küchler EC, Cooper ME, Liu K, Marazita ML, Tanboğa İ, Granjeiro JM, Seymen F, Castilla EE, Orioli IM, Sfeir C, Ouyang H, Buzalaf MA, Vieira AR. Aquaporin 5 interacts with fluoride and possibly protects against caries. PLoS One. 2015;10:e0143068.CrossRefGoogle Scholar
  2. Anu V, Arsheya GS, Anjana V, Annison GK, Aruna MRL, Alice AP, Aishwarya BA. Dental caries experience, dental anomalies, and morphometric analysis of canine among monozygotic and dizygotic twins. Contemp Clin Dent. 2018;9(Suppl 2):S314–7.CrossRefGoogle Scholar
  3. Bayram M, Deeley K, Reis MF, Trombetta VM, Ruff TD, Sencak RC, Hummel M, Dizak PM, Washam K, Romanos HF, Lips A, Alves G, Costa MC, Granjeiro JM, Antunes LS, Küchler EC, Seymen F, Vieira AR. Genetic influences on dental enamel that impact caries differ between the primary and permanent dentitions. Eur J Oral Sci. 2015;123:327–34.CrossRefGoogle Scholar
  4. Bezamat M, Deeley K, Khaliq S, Letra A, Scariot R, Silva RM, Weber ML, Bussaneli D, Trevilatto PC, Almarza AJ, Ouyang H, Vieira AR. Are mTOR and ER stress pathway genes associated with oral and bone diseases? Caries Res. 2018;53(3):235–41.CrossRefGoogle Scholar
  5. Bretz WA, Corby PM, Hart TC, Costa S, Coelho MQ, Weyant RJ, Robinson M, Schork NJ. Dental caries and microbial acid production in twins. Caries Res. 2005a;39(3):168–72.CrossRefGoogle Scholar
  6. Bretz WA, Corby PM, Schork NJ, Robinson M, Coelho M, Costa S, Melo Filho MR, Weyant RJ, Hart TC. Longitudinal analysis of heritability for dental caries traits. J Dent Res. 2005b;84(11):1047–51.CrossRefGoogle Scholar
  7. Bretz WA, Corby PM, Melo MR, Coelho MQ, Costa SM, Robinson M, Schork NJ, Drewnowski A, Hart TC. Heritability estimates for dental caries and sucrose sweetness preference. Arch Oral Biol. 2006;51(12):1156–60.CrossRefGoogle Scholar
  8. Corby PM, Bretz WA, Hart TC, Schork NJ, Wessel J, Lyons-Weiler J, Paster BJ. Heritability of oral microbial species in caries-active and caries-free twins. Twin Res Hum Genet. 2007;10(6):821–8.CrossRefGoogle Scholar
  9. Filho AV, Calixto MS, Deeley K, Santos N, Rosenblatt A, Vieira AR. MMP20 rs1784418 protects certain populations against caries. Caries Res. 2017;51(1):46–51.CrossRefGoogle Scholar
  10. Fisher-Owens SA, Gansky SA, Platt LJ, Weintraub JA, Soobader MJ, Bramlett MD, Newacheck PW. Influences on children’s oral health: a conceptual model. Pediatrics. 2007;120(3):e510–20.CrossRefGoogle Scholar
  11. Frencken JE, Sharma P, Stenhouse L, Green D, Laverty D, Dietrich T. Global epidemiology of dental caries and severe periodontitis—a comprehensive review. J Clin Periodontol. 2017;44 Suppl 18:S94–S105. https://doi.org/10.1111/jcpe.12677.CrossRefGoogle Scholar
  12. Gao XJ. Dental caries in 280 pairs of same-sex twins. Zhonghua Kou Qiang Yi Xue Za Zhi. 1990;25(1):18–20, 61.Google Scholar
  13. Goodman HO, Luke JE, Rosen S, Hackel E. Heritability in dental caries, certain oral microflora and salivary components. Am J Hum Genet. 1959;11(3):263–73.PubMedPubMedCentralGoogle Scholar
  14. Haworth S, Shungin D, van der Tas JT, Vucic S, Medina-Gomez C, Yakimov V, Feenstra B, Shaffer JR, Lee MK, Standl M, Thiering E, Wang C, Bønnelykke K, Waage J, Jessen LE, Nørrisgaard PE, Joro R, Seppälä I, Raitakari O, Dudding T, Grgic O, Ongkosuwito E, Vierola A, Eloranta AM, West NX, Thomas SJ, McNeil DW, Levy SM, Slayton R, Nohr EA, Lehtimãki T, Lakka T, Bisgaard H, Pennell C, Kühnisch T, Marazita ML, Melbye M, Geller F, Rivadeneira F, Wolvius EB, Franks PW, Johansson I, Timpson NJ. Consortium-based genome-wide meta-analysis for childhood dental caries traits. Hum Mol Genet. 2018;27(17):3113–27.CrossRefGoogle Scholar
  15. Horowitz SL, Osbourne RH, DeGeorge FV. Caries experience in twins. Science. 1958;128(3319):300–1.CrossRefGoogle Scholar
  16. Keyes PH. Recent advances in dental caries research. Bacteriology. Bacteriological findings and biologic implications. Int Dent J. 1962;12:443–64.Google Scholar
  17. Kuppan A, Rodrigues S, Samuel V, Ramakrishnan M, Halawany HS, Abraham NB, Jacob V, Anil S. Prevalence and heritability of early childhood caries among monozygotic and dizygotic twins. Twin Res Hum Genet. 2017;20(1):43–52.CrossRefGoogle Scholar
  18. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G. Discovery and saturation analysis of cancer genes across 21 tumor types. Nature. 2014;505(7484):495–501.CrossRefGoogle Scholar
  19. Liu H, Deng H, Cao CF, Ono H. Genetic analysis of dental traits in 82 pairs of female-female twins. Chin J Dent Res. 1998;1(3):12–6.PubMedGoogle Scholar
  20. Menezes-Silva R, Khaliq S, Deeley K, Letra A, Vieira AR. Genetic susceptibility to periapical disease: conditional contribution of MMP2 and MMP3 genes to the development of periapical lesions and healing response. J Endod. 2012;38:604–7.CrossRefGoogle Scholar
  21. Nibali L, Di Iorio A, Tu YK, Vieira AR. Host genetics role in the pathogenesis of periodontal disease and caries. J Clin Periodontol. 2017;44(Suppl 18):S52–78.CrossRefGoogle Scholar
  22. Rose EK, Vieira AR. Caries and periodontal disease: insights from two US populations living a century apart. Oral Health Prev Dent. 2008;6:23–8.PubMedGoogle Scholar
  23. Salinas V, Vega P, Piccirilli MV, Chicco C, Ciraolo C, Christiansen S, Consalvo D, Perez-Maturo J, Medina N, González-Morón D, Novaro V, Perrone C, García MDC, Agosta G, Silva W, Kauffman M. Identification of a somatic mutation in the RHEB gene through high depth and ultra-high depth next generation sequencing in a patient with hemimegalencephaly and drug resistant epilepsy. Eur J Med Genet. 2018. [Epub ahead of print].Google Scholar
  24. Shimizu T, Ho B, Deeley K, Briseño-Ruiz J, Faraco IM Jr, Schupack BI, Brancher JA, Pecharki GD, Küchler EC, Tannure PN, Lips A, Vieira TC, Patir A, Yildirim M, Poletta FA, Mereb JC, Resick JM, Brandon CA, Orioli IM, Castilla EE, Marazita ML, Seymen F, Costa MC, Granjeiro JM, Trevilatto PC, Vieira AR. Enamel formation genes influence enamel microhardness before and after cariogenic challenge. PLoS One. 2012;7:e45022.CrossRefGoogle Scholar
  25. Tjäderhane L, Larjava H, Sorsa T, Uitto VJ, Larmas M, Salo T. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J Dent Res. 1998;77(8):1622–9.CrossRefGoogle Scholar
  26. Vieira AR. Genetic influences on dental caries. eLS. Chichester: Wiley; 2016. http://www.els.net  https://doi.org/10.1002/9780470015902.a0024258.
  27. Vieira AR, Marazita ML, Goldstein-McHenry T. Genome-wide scan finds suggestive caries loci. J Dent Res. 2008;87(5):435–9.CrossRefGoogle Scholar
  28. Vieira AR, Modesto A, Marazita ML. Caries: review of human genetics research. Caries Res. 2014;48:491–506.CrossRefGoogle Scholar
  29. Vieira AR, Gibson CW, Deeley K, Xue H, Li Y. Weaker dental enamel explains dental decay. PLoS One. 2015a;10:e0124236.CrossRefGoogle Scholar
  30. Vieira AR, Hilands KM, Braun TW. Saving more teeth—a case for personalized care. J Pers Med. 2015b;5(1):30–5.CrossRefGoogle Scholar
  31. Vieira AR, Bayram M, Seymen F, Sencak R, Lippert F, Modesto A. In vitro acid-mediated initial dental enamel loss is associated with genetic variants previously linked to caries experience. Front Physiol. 2017a;8:104.CrossRefGoogle Scholar
  32. Vieira AR, Silva MB, Souza KA, Filho AVA, Rosenblatt A, Modesto A. A pragmatic study shows failure of dental composite fillings is genetically determined: a contribution to the discussion on dental amalgams. Front Med (Lausanne). 2017b;4:186.CrossRefGoogle Scholar
  33. Weber ML, Hsin H-Y, Kalay E, Brožková DS, Shimizu T, Bayram M, Deeley K, Küchler EC, Forella J, Ruff TD, Trombetta VM, Sencak RC, Hummel M, Briseño-Ruiz J, Revu SK, Granjeiro JM, Antunes LS, Abreu FV, Costa MC, Tannure PN, Koruyucu M, Patir A, Poletta FA, Mereb JC, Castilla EE, Orioli IM, Marazita ML, Ouyang H, Jayaraman T, Seymen F, Vieira AR. Role of estrogen related receptor beta (ESRRB) in DFN35B hearing impairment and dental decay. BMC Med Genet. 2014;15:81.CrossRefGoogle Scholar
  34. Weber M, Bogstad Søvik J, Mulic A, Deeley K, Tveit AB, Forella J, Shirey N, Vieira AR. Redefining the phenotype of dental caries. Caries Res. 2018;52(4):263–71.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexandre Rezende Vieira
    • 1
  1. 1.Oral BiologyUniversity of PittsburghPittsburghUSA

Personalised recommendations