Advertisement

Standard Model of Fundamental Interactions

  • Gerhard EckerEmail author
Chapter
Part of the Undergraduate Lecture Notes in Physics book series (ULNP)

Abstract

Particle physicists have often come out with very imaginative linguistic creations. Asymptotic freedom and infrared slavery are good examples but also leptons and hadrons for matter particles. Gell-Mann was inspired by Joyce’s novel “Finnegans Wake” for the naming of quarks and he is also credited for the name quantum chromodynamics. On the other hand, particle physicists have completely failed in finding a proper name for the theory of fundamental interactions that in principle describes all nongravitational physical phenomena from \(10^{-19}\) m (resolution of the LHC) to at least \(10^{11}\) m (distance earth-sun). The theory consisting of the electroweak gauge theory and the gauge theory of the strong interactions carries the fanciless name “Standard Model”. Nobody in his right mind would nowadays talk about the Maxwell model of electrodynamics or Einstein’s relativity model.

References

  1. Abachi S et al (1995) Phys Rev Lett 74:2422ADSCrossRefGoogle Scholar
  2. Abe F et al (1995) Phys Rev Lett 74:2626ADSCrossRefGoogle Scholar
  3. Arnison G et al (UA1 Collaboration) (1983) Phys Lett B 122:103; ibid. B 126:398Google Scholar
  4. Aubert JJ et al (1974) Phys Rev Lett 33:1404ADSCrossRefGoogle Scholar
  5. Augustin JE et al (1974) Phys Rev Lett 33:1406ADSCrossRefGoogle Scholar
  6. Bagnaia P (UA2 Collaboration) et al (1983) Phys Lett B 129:130Google Scholar
  7. Banner M (UA2 Collaboration) et al (1983) Phys Lett B 122:476Google Scholar
  8. Bertlmann R, Pietschmann H (1977) Phys Rev D 15:683ADSCrossRefGoogle Scholar
  9. Bjorken JD, Glashow SL (1964) Phys Lett 11:255ADSMathSciNetCrossRefGoogle Scholar
  10. Bouchiat C, Iliopoulos J, Meyer P (1972) Phys Lett B 38:519ADSCrossRefGoogle Scholar
  11. Glashow SL (1961) Nucl Phys 22:579CrossRefGoogle Scholar
  12. Glashow SL, Iliopoulos J, Maiani L (1970) Phys Rev D 2:1285ADSCrossRefGoogle Scholar
  13. Gross DJ, Jackiw R (1972) Phys Rev D 6:477ADSCrossRefGoogle Scholar
  14. Hasert FJ et al (1973a) Phys Lett B 46:121ADSCrossRefGoogle Scholar
  15. Hasert FJ et al (1973b) Phys Lett B 46:138ADSCrossRefGoogle Scholar
  16. Herb SW et al (1977) Phys Rev Lett 39:252ADSCrossRefGoogle Scholar
  17. Kobayashi M, Maskawa T (1973) Prog Theor Phys 49:652ADSCrossRefGoogle Scholar
  18. Perl ML et al (1975) Phys Rev Lett 35:1489ADSCrossRefGoogle Scholar
  19. Salam A (1968) In: Svartholm N (ed) Proceedings of 8th Nobel symposium. Almqvist and Wiksell, StockholmGoogle Scholar
  20. Tanabashi M et al (Particle Data Group) (2018) Phys Rev D 98:030001Google Scholar
  21. Weinberg S (1967) Phys Rev Lett 19:1264ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fakultät für PhysikUniversität WienViennaAustria

Personalised recommendations