Bioreactor for Microalgal Cultivation Systems: Strategy and Development

  • Fatimah Md. YusoffEmail author
  • Norio Nagao
  • Yuki Imaizumi
  • Tatsuki Toda
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 10)


Microalgae are important natural resources that can provide food, medicine, energy and various bioproducts for nutraceutical, cosmeceutical and aquaculture industries. Their production rates are superior compared to those of terrestrial crops. However, microalgae biomass production on a large scale is still a challenging problem in terms of economic and ecological viability. Microalgal cultivation system should be designed to maximize production with the least cost. Energy efficient approaches of using light, dynamic mixing to maximize use of carbon dioxide (CO2) and nutrients and selection of highly productive species are the main considerations in designing an efficient photobioreactor. In general, optimized culture conditions and biological responses are the two overarching attributes to be considered for photobioreactor design strategies. Thus, fundamental aspects of microalgae growth, such as availability of suitable light, CO2 and nutrients to each growing cell, suitable environmental parameters (including temperature and pH) and efficient removal of oxygen which otherwise would negatively impact the algal growth, should be integrated into the photobioreactor design and function. Innovations should be strategized to fully exploit the wastewaters, flue-gas, waves or solar energy to drive large outdoor microalgae cultivation systems. Cultured species should be carefully selected to match the most suitable growth parameters in different reactor systems. Factors that would decrease production such as photoinhibition, self-shading and phosphate flocculation should be nullified using appropriate technical approaches such as flashing light innovation, selective light spectrum, light-CO2 synergy and mixing dynamics. Use of predictive mathematical modelling and adoption of new technologies in novel photobioreactor design will not only increase the photosynthetic and growth rates but will also enhance the quality of microalgae composition. Optimizing the use of natural resources and industrial wastes that would otherwise harm the environment should be given emphasis in strategizing the photobioreactor mass production. To date, more research and innovation are needed since scalability and economics of microalgae cultivation using photobioreactors remain the challenges to be overcome for large-scale microalgae production.


Energy efficiency Mathematical modelling Microalgae Nutrients Photobioreactors Solar energy 



This study is partially supported by the SATREPS-COSMOS Malaysia-Japan collaborative project under the auspices of the Department of Higher Education, Ministry of Education Malaysia.


  1. Abu-Ghosh S, Fixler D, Dubinsky Z, Iluz D (2016) Flashing light in microalgae biotechnology. Bioresour Tech 203:357–363CrossRefGoogle Scholar
  2. Acién Fernández FG, Fernández Sevilla JM, Sánchez Pérez JA, Molina Grima E, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56(8):2721–2732CrossRefGoogle Scholar
  3. Adenan NS, Yusoff FM, Medipally SR, Shariff M (2016) Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency. J Environ Biol 37:669–676Google Scholar
  4. Al Ketife AMD, Judd S, Znad H (2016) A mathematical model for carbon fixation and nutrient removal by an algal photobioreactor. Chem Eng Sci 153:354–362CrossRefGoogle Scholar
  5. Alishahi M, Karamifar M, Mesbah M (2015) Effects of astaxanthin and Dunaliella salina on skin carotenoids, growth performance and immune response of Astronotus ocellatus. Aquac Int 23(5):1239–1248CrossRefGoogle Scholar
  6. Aly N, Tarai RK, Kale PG, Paramasivan B (2017) Modelling the effect of photoinhibition on microalgal production potential in fixed and trackable photobioreactors in Odisha. India Curr Sci 113(2):272–283CrossRefGoogle Scholar
  7. Angeles IP, Chien Y-H, Tayamen MM (2009) Effects of different dosages of astaxanthin on giant freshwater prawn Macrobrachium rosenbergii (De Man) challenged with Lactococcus garvieae. Aquac Res 41(1):70–77CrossRefGoogle Scholar
  8. Arashiro LT, Montero N, Ferrer I, Acien FG, Gomez C, Garfi M (2018) Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Sci Total Environ 622–623:1118–1130CrossRefGoogle Scholar
  9. Arora N, Patel A, Pruthi PA, Poluri KM, Pruthi V (2018) Utilization of stagnant non-potable pond water for cultivating oleaginous microalga Chlorella minutissima for biodiesel production. Renew Energ 126:30–37CrossRefGoogle Scholar
  10. Atta M, Idris A, Bukhari A, Wahidin S (2013) Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresour Tech 148:373–378CrossRefGoogle Scholar
  11. Becker EW (1984) Biotechnology and exploitation of the green alga Scenedesmus obliquus in India. Biomass 4(1):1–19MathSciNetCrossRefGoogle Scholar
  12. Becker EW, Venkataraman LV (1984) Production and utilization of the blue-green alga Spirulina in India. Biomass 4(2):105–125CrossRefGoogle Scholar
  13. Begum H, Yusoff FM, Banerjee S, Khatoon H, Shariff M (2016) Availability and utilization of pigments from microalgae. Crit Rev Food Sci 56(13):2209–2222CrossRefGoogle Scholar
  14. Blanken W, Cuaresma M, Wijffels RH, Janssen M (2013) Cultivation of microalgae on artificial light comes at a cost. Algal Res 2(4):333–340CrossRefGoogle Scholar
  15. Burgess G, Fernández-Velasco JG (2007) Materials, operational energy inputs, and net energy ratio for photobiological hydrogen production. Int J Hydrogen Energ 32(9):1225–1234CrossRefGoogle Scholar
  16. Cao W, Wang X, Sun S, Hu C, Zhao Y (2017) Simultaneously upgrading biogas and purifying biogas slurry using cocultivation of Chlorella vulgaris and three different fungi under various mixed light wavelength and photoperiods. Bioresour Tech 241:701–709CrossRefGoogle Scholar
  17. Carlozzi P (2000) Hydrodynamic aspects and Arthrospira growth in two outdoor tubular undulating row photobioreactors. Appl Microbiol Biot 54(1):14–22CrossRefGoogle Scholar
  18. Carlozzi P (2003) Dilution of solar radiation through “culture” lamination in photobioreactor rows facing south–north: a way to improve the efficiency of light utilization by cyanobacteria (Arthrospira platensis). Biotechnol Bioeng 81(3):305–315CrossRefGoogle Scholar
  19. Chang HX, Fu Q, Huang Y, Xia A, Liao Q, Zgu X, Zheng YP, Sun CH (2016) An annular photobioreactor with ion-exchange-membrane for non-touch microalgae cultivation with wastewater. Bioresour Tech 219:668–676CrossRefGoogle Scholar
  20. Cheah WY, Show PL, Chang J-S, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Tech 184:190–201CrossRefGoogle Scholar
  21. Chen BF, Yang HK, Wu CH, Lee TC, Chen B (2018) Numerical study of mixing in microalgae-farming tanks with baffles. Ocean Eng 161:168–186CrossRefGoogle Scholar
  22. Cheng-Wu Z, Zmora O, Kopel R, Richmond A (2001) An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture 195(1):35–49Google Scholar
  23. Chini Zittelli G, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70(1):299–312Google Scholar
  24. Chini Zittelli G, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261(3):932–943CrossRefGoogle Scholar
  25. Chinnasamy S, Bhatnagar A, Claxton R, Das KC (2010) Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Tech 101(17):6751–6760CrossRefGoogle Scholar
  26. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306CrossRefGoogle Scholar
  27. da Fontoura JT, Rolim GS, Farenzena M, Gutterres M (2017) Influence of light intensity and tannery wastewater concentration on biomass production and nutrient removal by microalgae Scenedesmus sp. Process Saf Environ 111:355–362CrossRefGoogle Scholar
  28. Degen J, Uebele A, Retze A, Schmid-Staiger U, Trösch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92(2):89–94CrossRefGoogle Scholar
  29. Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 85(3):289–295Google Scholar
  30. Detweiler AM, Mioni CE, Hellier KL, Allen JJ, Carter SA, Bebout BM, Fleming EE, Corrado C, Prufert-Bebout LE (2015) Evaluation of wavelength selective photovoltaic panels on microalgae growth and photosynthetic efficiency. Algal Res 9:170–177CrossRefGoogle Scholar
  31. Di Caprio F, Altimari P, Pagnanelli F (2018) Effect of Ca2+ concentration on Scenedesmus sp. growth in heterotrophic and photoautotrophic cultivation. New Biotechnol 40:228–235CrossRefGoogle Scholar
  32. Dogaris I, Welch M, Meiser A, Walmsley L, Philippidis G (2015) A novel horizontal photobioreactor for high-density cultivation of microalgae. Bioresour Tech 198:316–324CrossRefGoogle Scholar
  33. Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18(6):811–826Google Scholar
  34. Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21(1):111–117CrossRefGoogle Scholar
  35. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412Google Scholar
  36. Ebrahimi Nigjeh S, Yusoff FM, Mohamed Alitheen NB, Rasoli M, Keong YS, Omar ARb (2013) Cytotoxic effect of ethanol extract of microalga, Chaetoceros calcitrans, and its mechanisms in inducing apoptosis in human breast cancer cell line. Biomed Res Int (Article ID 783690)Google Scholar
  37. Feng P, Deng Z, Hu Z, Fan L (2011) Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour Tech 102(22):10577–10584CrossRefGoogle Scholar
  38. Foo SC, Yusoff FM, Ismail M, Basri M, Chan KW, Khong NMH, Yau SK (2015) Production of fucoxanthin-rich fraction (FxRF) from a diatom, Chaetoceros calcitrans (Paulsen) Takano 1968. Algal Res 12:26–32CrossRefGoogle Scholar
  39. Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NMH, Chan KW, Ebrahimi M (2017) Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J Biotechnol 241:175–183CrossRefGoogle Scholar
  40. Freitas BCB, Cassuriaga APA, Morais MG, Costa JAV (2017) Pentoses and light intensity increase the growth and carbohydrate production and alter the protein profile of Chlorella minutissima. Bioresour Tech 238:248–253CrossRefGoogle Scholar
  41. Fuente D, Keller J, Conejero JA, Rögner M, Rexroth S, Urchueguía JF (2017) Light distribution and spectral composition within cultures of micro-algae: quantitative modelling of the light field in photobioreactors. Algal Res 23:166–177CrossRefGoogle Scholar
  42. Gao X, Wang X, Li H, Roje S, Sablani SS, Chen S (2017) Parameterization of a light distribution model for green cell growth of microalgae: Haematococcus pluvialis cultured under red LED lights. Algal Res 23:20–27CrossRefGoogle Scholar
  43. García-González M, Moreno J, Cañavate JP (2003) Conditions for open-air outdoor culture of Dunaliella salina in southern Spain. J Appl Phycol 15(2):177–184CrossRefGoogle Scholar
  44. García-González M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115(1):81–90CrossRefGoogle Scholar
  45. Gbadamosi OK, Lupatsch I (2018) Effects of dietary Nannochloropsis salina on the nutritional performance and fatty acid profile of Nile tilapia, Oreochromis niloticus. Algal Res 33:48–54CrossRefGoogle Scholar
  46. Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488(7411):329–335CrossRefGoogle Scholar
  47. Gifuni I, Olivieri G, Pollio A, Franco TT, Marzocchella A (2017) Autotrophic starch production by Chlamydomonas species. J Appl Phycol 29(1):105–114CrossRefGoogle Scholar
  48. Goh SH, Alitheen NB, Yusoff FM, Yap SK, Loh SP (2014) Crude ethyl acetate extract of marine microalga, Chaetoceros calcitrans, induces apoptosis in MDA-MB-231 breast cancer cells. Pharmacogn Mag 10(37):1–8Google Scholar
  49. Goldman JC, Ryther JH, Williams LD (1975) Mass production of marine algae in outdoor cultures. Nature 254:594CrossRefGoogle Scholar
  50. Gonçalves AL, Pires JCM, Simões M (2016) Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production. Bioresour Tech 200:279–286CrossRefGoogle Scholar
  51. Guldhe A, Ansari FA, Singh P, Bux F (2017) Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecol Eng 99:47–53CrossRefGoogle Scholar
  52. Gummert F, Meffert ME, Stratmann H (1953) Nonsterile large-scale culture of Chlorella in greenhouse and open air, In: Burlew JS (ed) Algae culture from laboratory to pilot plant. Carnegie Institution of Washington Publication 600, Washington D.C, pp 166–176Google Scholar
  53. Guyon JB, Verge V, Schatt P, Lozano JC, Liennard M (2018) Bouget FY (2018) Comparative analysis of culture conditions for the optimization of carotenoid production in several strains of the picoeukaryote Ostreococcus. Mar Drugs 16:76. Scholar
  54. Hall DO, Acién Fernández FG, Guerrero EC, Rao KK, Grima EM (2003) Outdoor helical tubular photobioreactors for microalgal production: Modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82(1):62–73CrossRefGoogle Scholar
  55. Hase R, Oikawa H, Sasao C, Morita M, Watanabe Y (2000) Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai city. J Biosci Bioeng 89(2):157–163CrossRefGoogle Scholar
  56. Hidasi N, Belay A (2018) Diurnal variation of various culture and biochemical parameters of Arthrospira platensis in large-scale outdoor raceway ponds. Algal Res 29:121–129CrossRefGoogle Scholar
  57. Hirata S, Hayashitani M, Taya M, Tone S (1996) Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight-collection device. J Ferment Bioeng 81(5):470–472Google Scholar
  58. Holdmann C, Schmid-Staiger U, Hornstein H, Hirth T (2018) Keeping the light energy constant—Cultivation of Chlorella sorokiniana at different specific light availabilities and different photoperiods. Algal Res 29:61–70CrossRefGoogle Scholar
  59. Hu J-Y, Sato T (2017) A photobioreactor for microalgae cultivation with internal illumination considering flashing light effect and optimized light-source arrangement. Energ Convers Manage 133:558–565CrossRefGoogle Scholar
  60. Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51(1):51–60CrossRefGoogle Scholar
  61. Huang J, Feng F, Wan M (2015) Improving performance of flat-plate photobioreactors by installation of novel internal mixers optimized with computational fluid dynamics. Bioresour Tech 182:151–159CrossRefGoogle Scholar
  62. Huesemann M, Williams P, Edmundson S (2017) The laboratory environmental algae pond simulator (LEAPS) photobioreactor: validation using outdoor pond cultures of Chlorella sorokiniana and Nannochloropsis salina. Algal Res 26:39–46CrossRefGoogle Scholar
  63. Huesemann MH, Benemann JR (2009) Biofuels from microalgae: review of products, processes and potential, with special focus on Dunaliella sp. Science Publishers, New HampshireCrossRefGoogle Scholar
  64. Javanmardian M, Palsson BO (1991) High-density photoautotrophic algal cultures: design, construction, and operation of a novel photobioreactor system. Biotechnol Bioeng 38(10):1182–1189CrossRefGoogle Scholar
  65. Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Tech 128:359–364CrossRefGoogle Scholar
  66. Jiménez C, Cossı́o BR, Labella D, Xavier Niell F (2003) The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain. Aquaculture 217(1):179–190Google Scholar
  67. Jin E-S, Polle JEW, Lee H-K, Hyun S-M, Chang M (2003) Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. Korean Soc Appl Microbiol Biotech 13(2):165–174Google Scholar
  68. Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Tech 101(4):1406–1413CrossRefGoogle Scholar
  69. Kandilian R, Jesus B, Legrand J, Pilon L, Pruvost J (2017) Light transfer in agar immobilized microalgae cell cultures. J Quant Spectrosc Ra 198:81–92CrossRefGoogle Scholar
  70. Kandilian R, Soulies A, Pruvost J, Rousseau B, Legrand J, Pilon L (2016) Simple method for measuring the spectral absorption cross-section of microalgae. Chem Eng Sci 146:357–368CrossRefGoogle Scholar
  71. Koller AP, Wolf L, Brück T, Weuster-Botz D (2018) Studies on the scale-up of biomass production with Scenedesmus spp. in flat-plate gas-lift photobioreactors. Bioproc Biosyst Eng 41(2):213–220Google Scholar
  72. Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strat Gl 18(1):27–46CrossRefGoogle Scholar
  73. Laws EA, Taguchi S, Hirata J, Pang L (1986a) Continued studies of high algal productivities in a shallow flume. Biomass 11(1):39–50CrossRefGoogle Scholar
  74. Laws EA, Taguchi S, Hirata J, Pang L (1986b) High algal production rates achieved in a shallow outdoor flume. Biotechnol Bioeng 28(2):191–197CrossRefGoogle Scholar
  75. Laws EA, Taguchi S, Hirata J, Pang L (1988a) Mass culture optimization studies with four marine microalgae. Biomass 16(1):19–32CrossRefGoogle Scholar
  76. Laws EA, Taguchi S, Hirata J, Pang L (1988b) Optimization of microalgal production in a shallow outdoor flume. Biotechnol Bioeng 32(2):140–147CrossRefGoogle Scholar
  77. Lee Y-H, Li P-H (2017) Using resonant ultrasound field-incorporated dynamic photobioreactor system to enhance medium replacement process for concentrated microalgae cultivation in continuous mode. Chem Eng Res Des 118:112–120CrossRefGoogle Scholar
  78. Leonardi RJ, Niizawa I, Irazoqui HA, Heinrich JM (2018) Modeling and simulation of the influence of fractions of blue and red light on the growth of the microalga Scenedesmus quadricauda. Biochem Eng J 129:16–25CrossRefGoogle Scholar
  79. Lim KC, Yusoff FM, Shariff M, Kamarudin MS (2018) Astaxanthin as feed supplement in aquatic animals. Rev Aquacult 10(3):738–773CrossRefGoogle Scholar
  80. Lima GM, Teixeira PCN, Teixeira CMLL, Filócomo D, Lage CLS (2018) Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis. Algal Res 31:157–166CrossRefGoogle Scholar
  81. Liu J, Wu Y, Wu C (2017) Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review. Bioresour Tech 241:1127–1137CrossRefGoogle Scholar
  82. López MCG-M, Sánchez EDR, López JLC (2006) Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. J Biotechnol 123(3):329–342CrossRefGoogle Scholar
  83. López-Rosales L, García-Camacho F, Sánchez-Mirón A, Beato EM, Chisti Y, Grima EM (2016) Pilot-scale bubble column photobioreactor culture of a marine dinoflagellate microalga illuminated with light emission diodes. Bioresour Tech 216:845–855CrossRefGoogle Scholar
  84. Lucker BF, Hall CC, Zegarac R, Kramer DM (2014) The environmental photobioreactor (ePBR): an algal culturing platform for simulating dynamic natural environments. Algal Res 6:242–249CrossRefGoogle Scholar
  85. Manirafasha E, Murwanashyaka T, Ndikubwimana T (2018) Enhancement of cell growth and phycocyanin production in Arthrospira (Spirulina) platensis by metabolic stress and nitrate fed-batch. Bioresour Tech 255:293–301CrossRefGoogle Scholar
  86. Maroneze MM, Siqueira SF, Vendruscolo RG (2016) The role of photoperiods on photobioreactors—a potential strategy to reduce costs. Bioresour Technol 219:493–499CrossRefGoogle Scholar
  87. Marotta G, Scargiali F, Lima S, Caputo G, Grisafi F, Brucato A (2017) Vacuum air-lift bioreactor for microalgae production. Chem Eng Trans 57:925–930Google Scholar
  88. Masojídek J, Papáček Š, Sergejevová M (2003) A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: basic design and performance. J Appl Phycol 15(2):239–248CrossRefGoogle Scholar
  89. Mayers JJ, Ekman Nilsson A, Albers E, Flynn KJ (2017) Nutrients from anaerobic digestion effluents for cultivation of the microalga Nannochloropsis sp.—impact on growth, biochemical composition and the potential for cost and environmental impact savings. Algal Res 26:275–286CrossRefGoogle Scholar
  90. Medipally SR, Yusoff FM, Banerjee S, Shariff M (2015) Microalgae as sustainable renewable energy feedstock for biofuel production. Biomed Res Int 2015:519513CrossRefGoogle Scholar
  91. Miranda JR, Passarinho PC, Gouveia L (2012) Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production. Appl Microbiol Biot 96(2):555–564CrossRefGoogle Scholar
  92. Mirón AS, Garcı́a MCC, Gómez AC, Camacho FGa, Grima EM, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16(3):287–297Google Scholar
  93. Mituya A, Nyunoya T, Tamiya H (1953) Re-pilot-plant experiments on algal mass culture. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington Publication 600, Washington D.C., pp 173–184Google Scholar
  94. Mohamed Ramli N, Verdegem MCJ, Yusoff FM, Zulkifely MK, Verreth JAJ (2017) Removal of ammonium and nitrate in recirculating aquaculture systems by the epiphyte Stigeoclonium nanum immobilized in alginate beads. Aquacult Env Interac 9:213–222CrossRefGoogle Scholar
  95. Moheimani NR, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18(6):703–712CrossRefGoogle Scholar
  96. Molina-Miras A, Morales-Amador A, de Vera CR (2018) A pilot-scale bioprocess to produce amphidinols from the marine microalga Amphidinium carterae: Isolation of a novel analogue. Algal Res 31:87–98CrossRefGoogle Scholar
  97. Mondal M, Ghosh A, Gayen K, Halder G, Tiwari ON (2017a) Carbon dioxide bio-fixation by Chlorella sp. BTA 9031 towards biomass and lipid production: optimization using central composite design approach. J CO2 Util 22:317–329Google Scholar
  98. Mondal M, Ghosh A, Tiwari ON (2017b) Influence of carbon sources and light intensity on biomass and lipid production of Chlorella sorokiniana BTA 9031 isolated from coalfield under various nutritional modes. Energ Convers Manage 145:247–254CrossRefGoogle Scholar
  99. Morais MG, Radmann EM, Andrade MR, Teixeira GG, Brusch LRF, Costa JAV (2009) Pilot scale semi-continuous production of Spirulina biomass in southern Brazil. Aquaculture 294(1):60–64CrossRefGoogle Scholar
  100. Moreno J, Vargas MÁ, Rodrı (2003) Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol Eng 20(4):191–197Google Scholar
  101. Morita M, Watanabe Y, Saiki H (2002) Photosynthetic productivity of conical helical tubular photobioreactor incorporating Chlorella sorokiniana under field conditions. Biotechnol Bioeng 77(2):155–162CrossRefGoogle Scholar
  102. Murray AM, Fotidis IA, Isenschmid A, Haxthausen KRA, Angelidaki I (2017) Wirelessly powered submerged-light illuminated photobioreactors for efficient microalgae cultivation. Algal Res 25:244–251CrossRefGoogle Scholar
  103. Naderi G, Znad H, Tade MO (2017) Investigating and modelling of light intensity distribution inside algal photobioreactor. Chem Eng Process 122:530–537CrossRefGoogle Scholar
  104. Natrah FMI, Bossier P, Sorgeloos P, Yusoff FM, Defoirdt T (2014) Significance of microalgal–bacterial interactions for aquaculture. Rev Aquacult 6:48–61CrossRefGoogle Scholar
  105. Natrah FMI, Yusoff FM, Shariff M, Abas F, Mariana NS (2007) Screening of Malaysian indigenous microalgae for antioxidant properties and nutritional value. J Appl Phycol 19(6):711–718CrossRefGoogle Scholar
  106. Norhasyima R, Mahlia T (2018) Advances in CO2 utilization technology: a patent landscape review. J CO2 Util 26:323–335Google Scholar
  107. Novoveská L, Zapata AKM, Zabolotney JB, Atwood MC, Sundstrom ER (2016) Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Res 18:86–94CrossRefGoogle Scholar
  108. Ogbonna JC, Soejima T, Tanaka H (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. In: Osinga R, Tramper J, Burgess JG, Wijffels RH (eds) Prog Ind M 35:289–297Google Scholar
  109. Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12(3):499–506CrossRefGoogle Scholar
  110. Olguín EJ, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15(2):249–257CrossRefGoogle Scholar
  111. Olivieri G, Salatino P, Marzocchella A (2014) Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. J Chem Technol Biot 89(2):178–195CrossRefGoogle Scholar
  112. Ozkan A, Kinney K, Katz L, Berberoglu H (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Tech 114:542–548CrossRefGoogle Scholar
  113. Panjiar N, Mishra S, Yadav AN, Verma P (2017) Functional foods from cyanobacteria: an emerging source for functional food products of pharmaceutical importance. In: Gupta VK, Treichel H, Shapaval VO, Oliveira LAd, Tuohy MG (eds) Microbial functional foods and nutraceuticals. Wiley, USA, pp 21–37.
  114. Parlevliet D, Moheimani NR (2014) Efficient conversion of solar energy to biomass and electricity. Aquat Biosyst 10:4CrossRefGoogle Scholar
  115. Peng J, Yuan JP, Wang JH (2012) Effect of diets supplemented with different sources of astaxanthin on the gonad of the sea urchin Anthocidaris crassispina. Nutrients 4(8):922–934CrossRefGoogle Scholar
  116. Pennington F, Guillard RRL, Liaaen-Jensen S (1988) Carotenoid distribution patterns in Bacillariophyceae (Diatoms). Biochem Syst Ecol 16(7):589–592CrossRefGoogle Scholar
  117. Pereira EG, Martins MA, Mendes MDSA, Mendes LBB, Nesi AN (2017) Outdoor cultivation of Scenedesmus obliquus BR003 in stirred tanks by airlift. J Braz Assoc Agric Eng.–4430
  118. Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Tech 102(1):17–25CrossRefGoogle Scholar
  119. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177 ENG LIFE SCIGoogle Scholar
  120. Pushparaj B, Pelosi E, Tredici MR, Pinzani E, Materassi R (1997) As integrated culture system for outdoor production of microalgae and cyanobacteria. J Appl Phycol 9(2):113–119CrossRefGoogle Scholar
  121. Qin C, Lei Y, Wu J (2018) Light/dark cycle enhancement and energy consumption of tubular microalgal photobioreactors with discrete double inclined ribs. Bioresour. Bioprocess 5:28.
  122. Rahaman MSA, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2011) A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renew Sust Energ Rev 15(8):4002–4012; Rastogi RP, Pandey A, Larroche C, Madamwar D (2018) Algal green energy—R&D and technological perspectives for biodiesel production. Renew Sust Energ Rev 82:2946–2969Google Scholar
  123. Rezvani F, Sarrafzadeh MH, Seo SH, Oh HM (2017) Phosphorus optimization for simultaneous nitrate-contaminated groundwater treatment and algae biomass production using Ettlia sp. Bioresour Tech 244(Pt 1):785–792CrossRefGoogle Scholar
  124. Richmond A, Cheng-Wu Z (2001) Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. J Biotechnol 85(3):259–269Google Scholar
  125. Richmond A, Lichtenberg E, Stahl B, Vonshak A (1990) Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J Appl Phycol 2(3):195–206CrossRefGoogle Scholar
  126. Rocha RP, Machado M, Vaz MGMV (2017) Exploring the metabolic and physiological diversity of native microalgal strains (Chlorophyta) isolated from tropical freshwater reservoirs. Algal Res 28:139–150CrossRefGoogle Scholar
  127. Rodolfi L, Chini Zittelli G, Bassi N (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112CrossRefGoogle Scholar
  128. Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400CrossRefGoogle Scholar
  129. Saeid A, Chojnacka K (2015) Toward production of microalgae in photobioreactors under temperate climate. Chem Eng Res Des 93:377–391CrossRefGoogle Scholar
  130. Sánchez Mirón A, Cerón Garcı́a M-C, Garcı́a Camacho F, Molina Grima E, Chisti Y (2002) Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enzyme Microb Tech 31(7):1015–1023Google Scholar
  131. Sánchez Mirón A, Contreras Gómez A, Garcı́a Camacho F, Molina Grima E, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70(1):249–270Google Scholar
  132. Schenk PM, Thomas-Hall SR, Stephens E (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1(1):20–43CrossRefGoogle Scholar
  133. Schultze LKP, Simon M-V, Li T, Langenbach D, Podola B, Melkonian M (2015) High light and carbon dioxide optimize surface productivity in a Twin-Layer biofilm photobioreactor. Algal Res 8:37–44CrossRefGoogle Scholar
  134. Schulze PSC, Barreira LA, Pereira HGC, Perales JA, Varela JCS (2014) Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol 32(8):422–430CrossRefGoogle Scholar
  135. Schulze PSC, Pereira HGC, Santos TFC (2016) Effect of light quality supplied by light emitting diodes (LEDs) on growth and biochemical profiles of Nannochloropsis oculata and Tetraselmis chuii. Algal Res 16:387–398CrossRefGoogle Scholar
  136. Seo SH, Ha JS, Yoo C (2017) Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp. in CO2-controlled photoautotrophic chemostat. Bioresour Tech 244(Pt 1):621–628Google Scholar
  137. Seshadri CV, Thomas S (1979) Mass culture of spirulina using low-cost nutrients. Biotechnol Lett 1(7):287–291CrossRefGoogle Scholar
  138. Sun Y, Huang Y, Liao Q, Fu Q, Zhu X (2016) Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor. Bioresour Tech 207:31–38CrossRefGoogle Scholar
  139. Thawechai T, Cheirsilp B, Louhasakul Y, Boonsawang P, Prasertsan P (2016) Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: Effect of light illumination and carbon dioxide feeding strategies. Bioresour Tech 219:139–149CrossRefGoogle Scholar
  140. Torzillo G, Carlozzi P, Pushparaj B, Montaini E, Materassi R (1993) A two-plane tubular photobioreactor for outdoor culture of Spirulina. Biotechnol Bioeng 42(7):891–898CrossRefGoogle Scholar
  141. Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11(1):61–74CrossRefGoogle Scholar
  142. Tredici MR, Carlozzi P, Chini Zittelli G, Materassi R (1991) A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour Tech 38(2):153–159CrossRefGoogle Scholar
  143. Ugwu C, Ogbonna J, Tanaka H (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biot 58(5):600–607CrossRefGoogle Scholar
  144. Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Tech 99(10):4021–4028CrossRefGoogle Scholar
  145. Ugwu CU, Ogbonna JC, Tanaka H (2005) Light/dark cyclic movement of algal culture (Synechocystis aquatilis) in outdoor inclined tubular photobioreactor equipped with static mixers for efficient production of biomass. Biotechnol Lett 27(2):75–78CrossRefGoogle Scholar
  146. Vadiveloo A, Moheimani NR, Cosgrove JJ, Bahri PA, Parlevliet D (2015) Effect of different light spectra on the growth and productivity of acclimated Nannochloropsis sp. (Eustigmatophyceae). Algal Res 8:121–127CrossRefGoogle Scholar
  147. Vallejos-Vidal V, Reyes-Lopez F, Teles M, MacKenzie S (2016) The response of fish to immunostimulant diets. Fish Shellfish Immun 56:116–121CrossRefGoogle Scholar
  148. Vergara C, Muñoz R, Campos JL, Seeger M, Jeison D (2016) Influence of light intensity on bacterial nitrifying activity in algal-bacterial photobioreactors and its implications for microalgae-based wastewater treatment. Int Biodeter Biodegr 114:116–121CrossRefGoogle Scholar
  149. Watanabe A, Hattori A, Fujita Y, Kiyohara T (1959) Large scale culture of a blue-green alga, Tolypothrix tenuis, utilizing hot spring and natural gas as heat and carbon dioxide sources. J Gen Appl Microbiol 5(1–2):51–57CrossRefGoogle Scholar
  150. Willette S, Gill SS, Dungan B (2018) Alterations in lipidome and metabolome profiles of Nannochloropsis salina in response to reduced culture temperature during sinusoidal temperature and light. Algal Res 32:79–92CrossRefGoogle Scholar
  151. Xia S, Wang K, Wan L, Li A, Hu Q, Zhang C (2013) Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar Drugs 11(7):2667–2681CrossRefGoogle Scholar
  152. Yan C, Muñoz R, Zhu L, Wang Y (2016) The effects of various LED (light emitting diode) lighting strategies on simultaneous biogas upgrading and biogas slurry nutrient reduction by using of microalgae Chlorella sp. Energy 106:554–561CrossRefGoogle Scholar
  153. Ye Q, Cheng J, Guo W, Xu J, Li K, Zhou J (2018) Serial lantern-shaped draft tube enhanced flashing light effect for improving CO2 fixation with microalgae in a gas-lift circumflux column photobioreactor. Bioresour Tech 255:156–162CrossRefGoogle Scholar
  154. Zhang CW, Richmond A (2003) Sustainable, high-yielding outdoor mass cultures of Chaetoceros muelleri var. subsalsum and Isochrysis galbana in vertical plate reactors. Mar Biotechnol 5(3):302–310Google Scholar
  155. Zhang J-Y, Qi H, He Z-Z, Yu X-Y, Ruan L-M (2017a) Investigation of light transfer procedure and photobiological hydrogen production of microalgae in photobioreactors at different locations of China. Int J Hydrogen Energ 42(31):19709–19722CrossRefGoogle Scholar
  156. Zhang T (2013) Dynamics of fluid and light intensity in mechanically stirred photobioreactor. J Biotechnol 168(1):107–116CrossRefGoogle Scholar
  157. Zhang Z, Huang JJ, Sun D, Lee Y, Chen F (2017b) Two-step cultivation for production of astaxanthin in Chlorella zofingiensis using a patented energy-free rotating floating photobioreactor (RFP). Bioresour Tech 224:515–522CrossRefGoogle Scholar
  158. Zhu L, Wang Z, Takala J (2013) Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresour Tech 137:318–325CrossRefGoogle Scholar
  159. Zhuang L-L, Azimi Y, Yu D, Wu Y-H, Hu H-Y (2018) Effects of nitrogen and phosphorus concentrations on the growth of microalgae Scenedesmus. LX1 in suspended-solid phase photobioreactors (ssPBR). Biomass Bioenerg 109:47–53CrossRefGoogle Scholar
  160. Zijffers J-WF, Salim S, Janssen M, Tramper J, Wijffels RH (2008) Capturing sunlight into a photobioreactor: Ray tracing simulations of the propagation of light from capture to distribution into the reactor. Chem Eng J 145(2):316–327CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fatimah Md. Yusoff
    • 1
    Email author
  • Norio Nagao
    • 1
  • Yuki Imaizumi
    • 1
  • Tatsuki Toda
    • 2
  1. 1.Department of Aquaculture/Faculty of AgricultureInternational Institute of Aquaculture and Aquatic Science, Universiti Putra Malaysia (UPM)SerdangMalaysia
  2. 2.Laboratory of Restoration Ecology, Graduate School of EngineeringSoka UniversityHachioji, TokyoJapan

Personalised recommendations