Agricultural Waste: A Suitable Source for Biofuel Production

  • Deepak G. PanpatteEmail author
  • Yogeshvari K. Jhala
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 10)


In current era, world is dependent on fossil fuels such as oil coal, natural gas, etc. Demand for the fossil fuels increase day by day due to increase in urbanization and industrialization. Excessive use of fossil fuels results in environment pollution especially in terms of generation of greenhouse gases. Natural sources of energy like wind, water, sun, biomass and geothermal heat can be utilized for fossil fuel production, and petroleum-based foods can be replaced by biomass-based fuels as bioethanol, biodiesel, biohydrogen, etc. Biodiesel production from food crops is no more an attractive option due to food versus fuel issue. Utilization of lignocellulosic waste from agriculture serves as better alternative looking to its lower cost, renewability and abundance. Lignocellulosic waste includes grasses, sawdust, wood chips, etc. Rice straw, wheat straw, corn straw and sugarcane bagasse are the major agricultural wastes. This chapter aims to present a brief overview of the available and accessible technologies for bioethanol production using these major lignocellulosic agro-waste.


Agricultural waste Biodiesel Biofuels Biological processes Biomass Renewable source 


  1. Abbi M, Kuhad RC, Singh A (1996) Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501. J Indus Microbiol 17:20–23CrossRefGoogle Scholar
  2. Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119CrossRefGoogle Scholar
  3. Balan V, Bals B, Chundawat SPS, Marshall D, Dale BE (2009) Lignocellulosic biomass pretreatment using AFEX. In: Mielenz JR (ed) Biofuels: methods and Protocols, vol 581. Humana Press, Springer Science + Business Media, LLC, pp 61–77CrossRefGoogle Scholar
  4. Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573CrossRefGoogle Scholar
  5. Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioprod Biorefining 4:77e93Google Scholar
  6. Belal EB (2013) Bioethanol production from rice straw residues. Braz J Microbiol 44(1):225–234CrossRefGoogle Scholar
  7. Belkacemi K, Hamoudi S (2003) Enzymatic hydrolysis of dissolved corn stalk hemicelluloses: reaction kinetics and modeling. J Chem Technol Biotechnol 78:802–808CrossRefGoogle Scholar
  8. Bilgen S, Kaygusuz K, Sari A (2004) Renewable energy for a clean and sustainable future. Energy Sources 26(12):1119–1129CrossRefGoogle Scholar
  9. Bjerre AB, Olesen AB, Fernqvist T (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioengin 49:568–577CrossRefGoogle Scholar
  10. Buaban B, Inoue H, Yano S, Tanapongpipat S, Ruanglek V, Champreda V (2010) Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. J Biosci Bioengin 110(1):18–25CrossRefGoogle Scholar
  11. Canilha L, Chandel AK, Suzane T, Antunes FAF, Luiz da Costa Freitas W, das Grac M (2012) Bioconversion of sugar cane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol:15 p. Article ID 989572Google Scholar
  12. Cardona CA, Quintero JA, Paz IC (2009) Production of bioethanol from sugarcane bagasse: status and perspectives. Biores Technol 101(13):4754–4766CrossRefGoogle Scholar
  13. Champagne P (2007) Feasibility of producing bio-ethanol from waste residues: a Canadian perspective. Resour Cons Recycl 50(3):211–230CrossRefGoogle Scholar
  14. Chen M, Zhao J, Xia L (2008) Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr Polym 71:411–415 CrossRefGoogle Scholar
  15. Cho D-H, Shin S-J, Bae Y, Park C, Kim YH (2011) Ethanol production from acid hydrolysates based on the construction and demolition wood waste using Pichia stipitis. Bioresour Technol 102(6):4439–4443CrossRefGoogle Scholar
  16. Chundawat SPS, Bals B, Campbell T (2013) Primer on ammonia fiber expansion pretreatment. In: Wyman C (ed) Aqueous pre-treatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, NY, USA, pp 169–195Google Scholar
  17. Dan M, Senila L, Roman M, Mihet M, Lazar MD (2015) From wood wastes to hydrogen e preparation and catalytic steam reforming of crude bio-ethanol obtained from fir wood. Renew Energy 74:27–36CrossRefGoogle Scholar
  18. Das P, Ganesha A, Wangikar P (2004) Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products. Biomass Bioenerg 27:445–457CrossRefGoogle Scholar
  19. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63(3):258–266CrossRefGoogle Scholar
  20. Eggman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Biores Technol 96:2019–2025CrossRefGoogle Scholar
  21. Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enz Microbial Technol 31:353–364CrossRefGoogle Scholar
  22. Ferreira S, Durate AP, Ribeiro MHL, Queiroz JA, Domingues FC (2009) Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochem Engin J 45:192–200CrossRefGoogle Scholar
  23. Graham RL, Nelson R, Sheehan J, Perlack RD, Wright LL (2007) Current and potential US corn stover supplies. Agronomy J 99(1):1–11CrossRefGoogle Scholar
  24. Hamelinck CN, Hooijdonk GV, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg 28:384–410CrossRefGoogle Scholar
  25. Hill J, Nelson E, Tilman D, Polasky S (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS 103:11206–11210CrossRefGoogle Scholar
  26. Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave assisted alkali pretreatment. Biochem Engin J 38:369–378CrossRefGoogle Scholar
  27. Jacobsen SE, Wyman CE (2002) Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugar cane bagasse hemicellulose at varying solids concentration. Ind Eng Chem Res 41(6):1454–1461CrossRefGoogle Scholar
  28. Jorgensen H, Kutter JP, Olsson L (2003) Separation and quantification of cellulases and hemicellulases by capillary electrophoresis. Anal Biochem 317(1):85–93CrossRefGoogle Scholar
  29. Kabel MA, Bos G, Zeevalking J, Voragen AGJ, Schols HA (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Biores Technol 98(10):2034–2042CrossRefGoogle Scholar
  30. Karimi K, Kheradmandinia S, Taherzadeh MJ (2007) Conversion of rice straw to sugars by dilute acid hydrolysis. Biomass Bioenerg 30:247–253 2006CrossRefGoogle Scholar
  31. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26(4):361–375CrossRefGoogle Scholar
  32. Kitchaiya P, Intanakul P, Krairiksh M (2003) Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. J Wood Chem Technol 23(2):217–225CrossRefGoogle Scholar
  33. Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314CrossRefGoogle Scholar
  34. Li LJ, Wang Y, Zhang Q et al (2008) Wheat straw burning and its associated impacts on Beijing air quality. Sci China Ser D: Earth Sci 51:403–414Google Scholar
  35. Lynd LR, van Zyl WH, Mcbride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583CrossRefGoogle Scholar
  36. Martín C, Klinke HB, Thomsen AB (2007) Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme and Microbial Technol 40:426–432CrossRefGoogle Scholar
  37. Moniruzzaman M (1995) Alcohol fermentation of enzymatic hydrolysate of exploded rice straw by Pichia stipitis. World J Microbiol Biotechnol 11:646CrossRefGoogle Scholar
  38. Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005a) Optimization of pH controlled liquid hot water pretreatment of corn stover. Biores Technol 96:1986–1993CrossRefGoogle Scholar
  39. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtazapple M (2005b) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96:673–686CrossRefGoogle Scholar
  40. Mtui GYS (2009) Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr J Biotechnol 8(8):1398–1415Google Scholar
  41. Neves MA, Kimura T, Shimizu N, Nakajima M (2007) State of the art and future trends of bioethanol production, dynamic biochemistry, process biotechnology and molecular biology. Global Science Books, pp 1–13Google Scholar
  42. Nguyen TAD, Kim KR, Han SJ, Cho HY, Kim JW, Park SM (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Biores Technol 101(19):7432–7438CrossRefGoogle Scholar
  43. Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27CrossRefGoogle Scholar
  44. Pandey A (2009) Handbook of plant-based biofuels. CRC Press, New YorkGoogle Scholar
  45. Parikka M (2004) Global biomass fuel resources. Biomass Bioenergy 27:613–620CrossRefGoogle Scholar
  46. Park YS, Kang SW, Lee JS, Hong SI, Kim SW (2002) Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl Microbiol Biotechnol 58:761–766CrossRefGoogle Scholar
  47. Peiji G, Yinbo Q, Xin Z, Mingtian Z, Yongcheng D (1997) Screening microbial strain for improving the nutritional value of wheat and corn straws as animal feed. Enz Microbial Technol 20:581–584CrossRefGoogle Scholar
  48. Rabinovich ML, Melnik MS, Boloboba AV (2002) Microbial cellulases (review). Appl Biochem and Microbiol 38(4):305–321CrossRefGoogle Scholar
  49. Reijnders L (2008) Ethanol production from crop residues and soil organic carbon. Resour Conserv Recycl 52(4):653–658CrossRefGoogle Scholar
  50. Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Indus Crops Prod 17(3):171–176CrossRefGoogle Scholar
  51. Saha BC, Cotta MA (2006) Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Prog 22:449–453CrossRefGoogle Scholar
  52. Sanchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Biores Technol 99:5270–5295CrossRefGoogle Scholar
  53. Sandgren M, Shaw A, Ropp TH, Wu S, Bott R, Cameron AD (2001) The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9 Å resolution. J Mol Biol 308(2):295–310Google Scholar
  54. Schmetz E, Ackiewicz M, Tomlinson G, White C, Gray D (2014) Increasing security and reducing carbon emissions of the U.S. transportation sector: a transformational role for coal with biomass. National Energy Technology LaboratoryGoogle Scholar
  55. Soccol RC, Faraco V, Karp S, Vandenberghe LPS, Thomaz-Soccol V, Woiciechowski A (2011) Lignocellulosic bioethanol: current status and future perspectives. Biofuels. Academic Press, Amsterdam, pp 101–122CrossRefGoogle Scholar
  56. Sun RC, Lawther JM, Banks WB (1995) Influence of alkaline pre-treatments on the cell-wall components of wheat-straw. Indus Crop Prod 4(2):127–145CrossRefGoogle Scholar
  57. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic material for ethanol production: a review. Biores Technol 96:673–686Google Scholar
  58. Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresour 2(4):707–738Google Scholar
  59. Takahashi CM, Lima KGC, Takahashi DF, Alterthum F (2000) Fermentation of sugarcane bagasse hemicellulosic hydrolysate and sugar mixtures to ethanol by recombinant Escherichia coli KO11. World J Microbiol Biotechnol 16:829–834CrossRefGoogle Scholar
  60. Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bior Technol 101(13):4744–4753CrossRefGoogle Scholar
  61. Ubersax JA, Platt DM (2010) Genetically modified microbes producing isoprenoids. WO Patent, 2010/141452 A1Google Scholar
  62. Wana C, Zhou Y, Li Y (2011) Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Biores Technol 102:6254–6259CrossRefGoogle Scholar
  63. Wanderley MCA, Martın C, Rocha GJM, Gouveia ER (2013) Increase in ethanol production from sugar cane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bior Technol 128:448–453CrossRefGoogle Scholar
  64. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Biores Technol 96:2026–2032CrossRefGoogle Scholar
  65. Xie GH, Wang XY, Ren LT (2010) China’s crop residues resources evaluation. Chin J Biotechnol 26:855–863Google Scholar
  66. Xu J, Takakuwa N, Nogawa M, Okada H, Morikawa Y (1998) A third xylanase from Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 49:18–724CrossRefGoogle Scholar
  67. Yu Q, Zhuang X, Yuan Z, Wang Q, Qi W, Wanga W (2010) Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Biores Technol 101:4895–4899CrossRefGoogle Scholar
  68. Zhang YHP, Ding S-Y, Mielenz JR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioengin 97(2):214–223CrossRefGoogle Scholar
  69. Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827CrossRefGoogle Scholar
  70. Zhu JY, Zhu W, Obryan P, Dien BS, Tian S, Gleisner R (2010) Ethanol production from SPORL pretreated lodge pole pine: preliminary evaluation of mass balance and process energy efficiency. Appl Microbiol Biotechnol 86(5):1355–1365CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Agricultural MicrobiologyB. A. College of Agriculture, Anand Agricultural UniversityAnandIndia

Personalised recommendations