Advertisement

Challenges and Requirements

  • Neelam TyagiEmail author
Chapter

Abstract

MR-only radiotherapy planning is an area of active research and development. Technological advances in MR-guided delivery systems and availability of MR scanners in radiotherapy department have made the clinical integration of MR-only planning possible. The chapter outlines challenges and requirements for MR-only radiotherapy and gives background on the most important requirement of MR-only planning, namely, the development of synthetic CT. The chapter describes the simplest method for generating synthetic CT, mainly bulk density assignment, and sets the background and motivation for more advanced methods.

Keywords

MR-only Synthetic CT Bulk density methods 

References

  1. Ahmed M, et al. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours—a study using flexible surface coils. Radiother Oncol. 2010;94(2):161–7.PubMedCrossRefGoogle Scholar
  2. Beavis AW, et al. Radiotherapy treatment planning of brain tumours using MRI alone. Br J Radiol. 1998;71(845):544–8.PubMedCrossRefGoogle Scholar
  3. Boettger T, et al. Radiation therapy planning and simulation with magnetic resonance images. In Medical imaging. SPIE. 2008.Google Scholar
  4. Brock KK, Deformable Registration Accuracy Consortium. Results of a multi-institution deformable registration accuracy study (MIDRAS). Int J Radiat Oncol Biol Phys. 2010;76(2):583–96.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Buhl SK, et al. Clinical evaluation of 3D/3D MRI-CBCT automatching on brain tumors for online patient setup verification – a step towards MRI-based treatment planning. Acta Oncol. 2010;49(7):1085–91.PubMedCrossRefGoogle Scholar
  6. Chang C, et al. Dosimetric evaluation of a volume segmentation algorithm for MRI-based treatment planning for head and neck cancer. Int J Radiat Oncol Biol Phys. 2010;78(3):S70.CrossRefGoogle Scholar
  7. Chen L, et al. Dosimetric evaluation of MRI-based treatment planning for prostate cancer. Phys Med Biol. 2004a;49(22):5157–70.PubMedCrossRefGoogle Scholar
  8. Chen L, et al. MRI-based treatment planning for radiotherapy: dosimetric verification for prostate IMRT. Int J Radiat Oncol Biol Phys. 2004b;60(2):636–47.PubMedCrossRefGoogle Scholar
  9. Chin AL, et al. Feasibility and limitations of bulk density assignment in MRI for head and neck IMRT treatment planning. J Appl Clin Med Phys. 2014;15(5):4851.PubMedCrossRefGoogle Scholar
  10. Dean CJ, et al. An evaluation of four CT-MRI co-registration techniques for radiotherapy treatment planning of prone rectal cancer patients. Br J Radiol. 2012;85(1009):61–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Doemer A, et al. Evaluating organ delineation, dose calculation and daily localization in an open-MRI simulation workflow for prostate cancer patients. Radiat Oncol. 2015;10:37.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Edmund JM, Nyholm T. A review of substitute CT generation for MRI-only radiation therapy. Radiat Oncol. 2017;12(1):28.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Eilertsen K, et al. A simulation of MRI based dose calculations on the basis of radiotherapy planning CT images. Acta Oncol. 2008;47(7):1294–302.PubMedCrossRefGoogle Scholar
  14. Ellingsen LM, et al. Robust deformable image registration using prior shape information for atlas to patient registration. Comput Med Imaging Graph. 2010;34(1):79–90.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Fiorentino A, et al. Clinical target volume definition for glioblastoma radiotherapy planning: magnetic resonance imaging and computed tomography. Clin Transl Oncol. 2013;15(9):754–8.PubMedCrossRefGoogle Scholar
  16. Gademann G, et al. Fractionated stereotactically guided radiotherapy of head and neck tumors: a report on clinical use of a new system in 195 cases. Radiother Oncol. 1993;29(2):205–13.PubMedCrossRefGoogle Scholar
  17. Gill S, et al. Seminal vesicle intrafraction motion analysed with cinematic magnetic resonance imaging. Radiat Oncol. 2014;9:174.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hanvey S, et al. The influence of MRI scan position on image registration accuracy, target delineation and calculated dose in prostatic radiotherapy. Br J Radiol. 2012;85(1020):e1256–62.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hoogcarspel SJ, et al. The feasibility of utilizing pseudo CT-data for online MRI based treatment plan adaptation for a stereotactic radiotherapy treatment of spinal bone metastases. Phys Med Biol. 2014;59(23):7383–91.PubMedCrossRefGoogle Scholar
  20. Johnstone E, et al. Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging-only radiation therapy. Int J Radiat Oncol Biol Phys. 2018;100(1):199–217.PubMedCrossRefGoogle Scholar
  21. Jonsson JH, et al. Treatment planning using MRI data: an analysis of the dose calculation accuracy for different treatment regions. Radiat Oncol. 2010;5:62.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Karotki A, et al. Comparison of bulk electron density and voxel-based electron density treatment planning. J Appl Clin Med Phys. 2011;12(4):3522.PubMedCrossRefGoogle Scholar
  23. Köhler M, et al. MR-only simulation for radiotherapy planning. Philips White Paper. 2015.Google Scholar
  24. Korhonen J, et al. A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer. Med Phys. 2014;41(1):011704.CrossRefGoogle Scholar
  25. Korhonen J, et al. Feasibility of MRI-based reference images for image-guided radiotherapy of the pelvis with either cone-beam computed tomography or planar localization images. Acta Oncol. 2015;54(6):889–95.PubMedCrossRefGoogle Scholar
  26. Korsholm ME, Waring LW, Edmund JM. A criterion for the reliable use of MRI-only radiotherapy. Radiat Oncol. 2014;9:16.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kristensen BH, et al. Dosimetric and geometric evaluation of an open low-field magnetic resonance simulator for radiotherapy treatment planning of brain tumours. Radiother Oncol. 2008;87(1):100–9.PubMedCrossRefGoogle Scholar
  28. Lambert J, et al. MRI-guided prostate radiation therapy planning: investigation of dosimetric accuracy of MRI-based dose planning. Radiother Oncol. 2011;98(3):330–4.PubMedCrossRefGoogle Scholar
  29. Lee YK, et al. Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Radiother Oncol. 2003;66(2):203–16.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Mak D, et al. Seminal vesicle interfraction displacement and margins in image guided radiotherapy for prostate cancer. Radiat Oncol. 2012;7:139.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Pasquier D, et al. MRI alone simulation for conformal radiation therapy of prostate cancer: technical aspects. Conf Proc IEEE Eng Med Biol Soc. 2006;1:160–3.PubMedCrossRefGoogle Scholar
  32. Persson E, et al. MR-OPERA: a multicenter/multivendor validation of magnetic resonance imaging-only prostate treatment planning using synthetic computed tomography images. Int J Radiat Oncol Biol Phys. 2017;99(3):692–700.CrossRefGoogle Scholar
  33. Prabhakar R, et al. Comparison of computed tomography and magnetic resonance based target volume in brain tumors. J Cancer Res Ther. 2007a;3(2):121–3.PubMedCrossRefGoogle Scholar
  34. Prabhakar R, et al. Feasibility of using MRI alone for 3D radiation treatment planning in brain tumors. Jpn J Clin Oncol. 2007b;37(6):405–11.PubMedCrossRefGoogle Scholar
  35. Ramsey CR, Oliver AL. Magnetic resonance imaging based digitally reconstructed radiographs, virtual simulation, and three-dimensional treatment planning for brain neoplasms. Med Phys. 1998;25(10):1928–34.PubMedCrossRefGoogle Scholar
  36. Ramsey CR, et al. Clinical application of digitally-reconstructed radiographs generated from magnetic resonance imaging for intracranial lesions. Int J Radiat Oncol Biol Phys. 1999;45(3):797–802.PubMedCrossRefGoogle Scholar
  37. Rasch C, et al. Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys. 1999;43(1):57–66.PubMedCrossRefGoogle Scholar
  38. Roach M III, et al. Prostate volumes defined by magnetic resonance imaging and computerized tomographic scans for three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys. 1996;35(5):1011–8.PubMedCrossRefGoogle Scholar
  39. Roberson PL, et al. Use and uncertainties of mutual information for computed tomography/ magnetic resonance (CT/MR) registration post permanent implant of the prostate. Med Phys. 2005;32(2):473–82.PubMedCrossRefGoogle Scholar
  40. Schad LR, et al. Radiosurgical treatment planning of brain metastases based on a fast, three-dimensional MR imaging technique. Magn Reson Imaging. 1994;12(5):811–9.PubMedCrossRefGoogle Scholar
  41. Stanescu T, et al. A study on the magnetic resonance imaging (MRI)-based radiation treatment planning of intracranial lesions. Phys Med Biol. 2008;53(13):3579–93.CrossRefGoogle Scholar
  42. Sun J, et al. Investigation on the performance of dedicated radiotherapy positioning devices for MR scanning for prostate planning. J Appl Clin Med Phys. 2015;16(2):4848.PubMedCrossRefGoogle Scholar
  43. Tyagi N, et al. Clinical workflow for MR-only simulation and planning in prostate. Radiat Oncol. 2017a;12(1):119.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Tyagi N, et al. Dosimetric and workflow evaluation of first commercial synthetic CT software for clinical use in pelvis. Phys Med Biol. 2017b;62(8):2961–75.PubMedCrossRefGoogle Scholar
  45. Ulin K, Urie MM, Cherlow JM. Results of a multi-institutional benchmark test for cranial CT/MR image registration. Int J Radiat Oncol Biol Phys. 2010;77(5):1584–9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Wang C, et al. MRI-based treatment planning with electron density information mapped from CT images: a preliminary study. Technol Cancer Res Treat. 2008;7(5):341–8.PubMedCrossRefGoogle Scholar
  47. Weber DC, et al. Open low-field magnetic resonance imaging for target definition, dose calculations and set-up verification during three-dimensional CRT for glioblastoma multiforme. Clin Oncol (R Coll Radiol). 2008;20(2):157–67.CrossRefGoogle Scholar
  48. Weltens C, et al. Interobserver variations in gross tumor volume delineation of brain tumors on computed tomography and impact of magnetic resonance imaging. Radiother Oncol. 2001;60(1):49–59.PubMedCrossRefGoogle Scholar
  49. Yin FF, et al. MR image-guided portal verification for brain treatment field. Int J Radiat Oncol Biol Phys. 1998;40(3):703–11.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Medical PhysicsMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations