Advertisement

Real-Time MRI-Guided Particle Therapy

  • Bradley M. Oborn
Chapter

Abstract

Real-time MRI guidance for x-ray beam radiotherapy has been delivered clinically since 2014. Many engineering challenges of integrating x-ray therapy systems capable of intensity-modulated radiotherapy (IMRT) with MRI scanners have therefore been overcome. As promised with the straightforward concept of using real-time image guidance with superior-quality MRI, early clinical results indicate positive improvements over conventional IGRT, and more challenging tumour sites are being treated. In essence, the x-ray beam-based radiotherapy community is now expanding into the direction of MRI guidance more than ever before. This leads us to propose a new challenge with even higher complexity and higher stakes: what can real-time MRI guidance offer for particle therapy? Particle therapy planning, delivery and outcome are inherently more dependent on having accurate knowledge of the patient anatomy than x-ray therapy. Utilising real-time and anatomically correct patient soft tissue information should expand the horizons in terms of treatment delivery accuracy, however propose a new set of engineering challenges in the already complex domain of particle therapy. In this chapter we provide a broad overview of the important elements of real-time MRI-guided particle therapy (MRPT). This includes the rationale, current literature, treatment workflows, engineering challenges and finally a concept design to illustrate some of the complexities of the modality.

Keywords

MR guidance Proton therapy Charged particles 

Notes

Acknowledgements

The author acknowledges funding from NHMRC Programme Grant No. 1036078 and ARC Discovery Grant No. DP120100821. The author also acknowledges a research agreement with Ion Beam Applications (IBA) and helpful discussions with P. J. Keall and P. E. Metcalfe regarding the content of this chapter.

References

  1. Acharya S, Fischer-Valuck BW, Kashani R, Parikh P, Yang D, Zhao T, Green O, Wooten O, Li HH, Hu Y, Rodriguez V, Olsen L, Robinson C, Michalski J, Mutic S, Olsen J. Online magnetic resonance image guided adaptive radiation therapy: First clinical applications. Int J Radiat Oncol Biol Phys. 2016;94(2):394–403.CrossRefGoogle Scholar
  2. Allen AM, Pawlicki T, Dong L, Fourkal E, Buyyounouski M, Cengel K, Plastaras J, Bucci MK, Yock TI, Bonilla L, Price R, Harris EE, Konski AA. An evidence based review of proton beam therapy: the report of astros emerging technology committee. Radiother Oncol. 2012;103(1):8–11.CrossRefGoogle Scholar
  3. Bucholz R, Miller D. System combining prootn beam irradiation and magnetic resonance imaging. Patent number US 6725078b2. April 20, 2004.Google Scholar
  4. Dewhirst MW, Birer SR. Oxygen-enhanced MRI is a major advance in tumor hypoxia imaging. Can Res. 2016;76:769–72.CrossRefGoogle Scholar
  5. Fallone BG, Carlone M, Murray B. Integrated external beam radiotherapy and MRI system. Patent number US 946777b2. October 18, 2016.Google Scholar
  6. Fuchs H, Moser P, Grschl M, Georg D. Magnetic field effects on particle beams and their implications for dose calculation in MR guided particle therapy. Med Phys. 2017;44(3):1149–56.CrossRefGoogle Scholar
  7. Han D, Siebers JV, Williamson JF. A linear, separable two-parameter model for dual energy ct imaging of proton stopping power computation. Med Phys. 2016;43(1):600–12.CrossRefGoogle Scholar
  8. Hartman J, Kontaxis C, Bol GH, Frank SJ, Lagendijk JJW, van Vulpen M, Raaymakers BW. Dosimetric feasibility of intensity modulated proton therapy in a transverse magnetic field of 1.5 t. Phys Med Biol. 2015;60(15):5955.CrossRefGoogle Scholar
  9. Hoffmann A, Gantz S, Grossinger P, Karsch L, Pawelke J, Serra A, Smeets J, Schellhammer S. Characterization of in-beam mr imaging performance during proton beam irradiation. Radiother Oncol. 2018;127(Suppl 1):S548.Google Scholar
  10. Koivula L, Wee L, Korhonen J. Feasibility of mri-only treatment planning for proton therapy in brain and prostate cancers: dose calculation accuracy in substitute ct images. Med Phys. 2016;43(8):4634–42.CrossRefGoogle Scholar
  11. Kruip MJM. Particle radiation therapy equipment. Patent number US 8838202b2. Sept 16, 2014.Google Scholar
  12. Kurz C, Landry G, Resch AF, Dedes G, Kamp F, Ganswindt U, Belka C, Raaymakers BW, Parodi K. A monte-carlo study to assess the effect of 1.5 t magnetic fields on the overall robustness of pencil-beam scanning proton radiotherapy plans for prostate cancer. Phys Med Biol. 2017;62(21):8470.CrossRefGoogle Scholar
  13. Liao Z, Lee JJ, Komaki R, Gomez DR, O’Reilly MS, Fossella FV, Blumenschein GR Jr, Heymach JV, Vaporciyan AA, Swisher SG, Allen PK, Choi NC, TF DL, Hahn SM, Cox JD, Lu CS, Mohan R. Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non-small-cell lung cancer. J Clin Oncol. 2018;36:1813–22.CrossRefGoogle Scholar
  14. Maspero M, van den Berg CAT, Landry G, Belka C, Parodi K, Seevinck PR, Raaymakers BW, Kurz C. Feasibility of mr-only proton dose calculations for prostate cancer radiotherapy using a commercial pseudo-ct generation method. Phys Med Biol. 2017;62(24):9159.CrossRefGoogle Scholar
  15. Moteabbed M, Schuemann J, Paganetti H. Dosimetric feasibility of real-time MRI-guided proton therapy. Med Phys. 2014;41(11):111713.CrossRefGoogle Scholar
  16. Oborn BM, Dowdell S, Metcalfe PE, Crozier S, Mohan R, Keall PJ. Proton beam deflection in mri fields: implications for mri-guided proton therapy. Med Phys. 2015;42(5):2113–24.CrossRefGoogle Scholar
  17. Oborn BM, Dowdell S, Metcalfe PE, Crozier S, Mohan R, Keall PJ. Future of medical physics: real-time mri-guided proton therapy. Med Phys. 2017;44(8):e77–90.CrossRefGoogle Scholar
  18. OConnor JP. System for combining magnetic resonance imaging with particle-based radiation systems for image guided radiation therapy. Patent number US 8427148b2. April 23, 2013.Google Scholar
  19. O’Connor JPB, Boult JKR, Jamin Y, et al. Oxygen-enhanced MRI accurately identifies, quantifies, and maps tumor hypoxia in preclinical cancer models. Can Res. 2016;76:787–95.CrossRefGoogle Scholar
  20. Odei BCL, Boothe D, Keole SR, Vargas CE, Foote RL, Schild SE, Ashman JB. A 20-year analysis of clinical trials involving proton beam therapy. Int J Part Ther. 2016;3(3):398–406.CrossRefGoogle Scholar
  21. PadillaCabal F, Georg D, Fuchs H. A pencil beam algorithm for magnetic resonance imageguided proton therapy. Med Phys. 2018;45(5):2195–204.CrossRefGoogle Scholar
  22. Raaijmakers AJE, Raaymakers BW, Lagendijk JJW. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength. Phys Med Biol. 2008;53(4):909–23.CrossRefGoogle Scholar
  23. Raaymakers BW, Raaijmakers AJE, Lagendijk JJW. Feasibility of MRI guided proton therapy: magnetic field dose effects. Phys Med Biol. 2008;53(20):5615–22.CrossRefGoogle Scholar
  24. Rank CM, Hnemohr N, Nagel AM, Rthke MC, Jkel O, Greilich S. Mri-based simulation of treatment plans for ion radiotherapy in the brain region. Radiother Oncol. 2013a;109(3):414–8.CrossRefGoogle Scholar
  25. Rank CM, Tremmel C, Hnemohr N, Nagel AM, Jakel O, Greilich S. Mri-based treatment plan simulation and adaptation for ion radiotherapy using a classification-based approach. Radiat Oncol. 2013b;8(1):51.CrossRefGoogle Scholar
  26. Schellhammer SM, Hoffmann AL. Prediction and compensation of magnetic beam deflection in MR-integrated proton therapy: a method optimized regarding accuracy, versatility and speed. Phys Med Biol. 2017;62(4):1548.CrossRefGoogle Scholar
  27. Schellhammer S, Karsch L, Smeets J, LAbbate C, Henrotin S, van der Kraaij E, Lhr A, Quets S, Pawelke J, Hoffmann A. First in-beam mr scanner for image-guided proton therapy: beam alignment and magnetic field effects. Radiother Oncol. 2018;127.(Suppl 1:S315–6.CrossRefGoogle Scholar
  28. Taasti VT, Petersen JBB, Muren LP, Thygesen J, Hansen DC. A robust empirical parametrization of proton stopping power using dual energy ct. Med Phys. 2016;43(10):5547–60.CrossRefGoogle Scholar
  29. Wilson RR. Radiological use of fast protons. Radiology. 1946;47:487–91.CrossRefGoogle Scholar
  30. Wolf R, Bortfeld T. An analytical solution to proton Bragg peak deflection in a magnetic field. Phys Med Biol. 2012;57(17):N329–37.CrossRefGoogle Scholar
  31. Yu JB, Soulos PR, Herrin J, Cramer LD, Potosky AL, Roberts KB, Gross CP. Proton versus intensity-modulated radiotherapy for prostate cancer: patterns of care and early toxicity. J Natl Cancer Inst. 2013;105(1):25–32.CrossRefGoogle Scholar
  32. Zhu J, Penfold SN. Dosimetric comparison of stopping power calibration with dual-energy ct and single energy ct in proton therapy treatment planning. Med Phys. 2016;43(6):2845–54.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bradley M. Oborn
    • 1
    • 2
  1. 1.Centre for Medical Radiation PhysicsUniversity of WollongongWollongongAustralia
  2. 2.Illawarra Cancer Care CentreWollongongAustralia

Personalised recommendations