Advertisement

ViziQuer: A Visual Notation for RDF Data Analysis Queries

  • Kārlis ČerānsEmail author
  • Agris Šostaks
  • Uldis Bojārs
  • Juris Bārzdiņš
  • Jūlija Ovčiņņikova
  • Lelde Lāce
  • Mikus Grasmanis
  • Artūrs Sproģis
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 846)

Abstract

Visual SPARQL query notations aim at easing the RDF data querying task. At the current state of the art there is still no generally accepted visual graph-based notation suitable to describe RDF data analysis queries that involve aggregation and subqueries. In this paper we present a visual diagram-centered notation for SPARQL select query formulation, capable to handle aggregate/statistics queries and hierarchic queries with subquery structure. The notation is supported by a web-based prototype tool. We present the notation examples, describe its syntax and semantics and describe studies with possible end users, involving both IT and medicine students.

Keywords

Visual notation Diagrammatic queries RDF data SPARQL Ad-hoc queries Data analysis queries 

References

  1. 1.
    SPARQL 1.1 Query Language. W3C Recommendation, 21 March 2013. http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
  2. 2.
    Resource Description Framework (RDF). http://www.w3.org/RDF/
  3. 3.
    Optique. Scalable End-User Access to Big Data. http://optique-project.eu
  4. 4.
    Vega-Gorgojo, G., Giese, M., Heggestøyl, S., Soylu, A., Waaler, A.: PepeSearch: semantic data for the masses. PLoS ONE 11(3), e0151573 (2016).  https://doi.org/10.1371/journal.pone.0151573CrossRefGoogle Scholar
  5. 5.
    Khalili, A., Merono-Penuela, A.: WYSIWYQ–What You See Is What You Query. In: Voila 2017, vol. 1947, pp. 123–130. CEUR Workshop Proceedings (2017). http://ceur-ws.org/Vol-1947/paper11.pdf
  6. 6.
    Ferré, S.: SPARKLIS: a SPARQL endpoint explorer for expressive question answering. In: Proceedings of the ISWC 2014 Posters & Demonstrations Track, vol. 1272. CEUR (2014). http://ceur-ws.org/Vol-1272/paper_39.pdf
  7. 7.
    Zloof, M.M.: Query by example. In: Proceedings of the National Computer Conference and Exposition, 19–22 May 1975, pp. 431–438. ACM (1975)Google Scholar
  8. 8.
    Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Visual query systems for databases: a survey. J. Vis. Lang. Comput. 8(2), 215–260 (1997)CrossRefGoogle Scholar
  9. 9.
    Catarci, T., Dongilli, P., Mascio, T.D., Franconi, E., Santucci, G., Tessaris, S.: An ontology based visual tool for query formulation support. In: Proceedings of the 16th European Conference on Artificial Intelligence, pp. 308–312. IOS Press (2004)Google Scholar
  10. 10.
    Soylu, A., Giese, M., Jimenez-Ruiz, E., Vega-Gorgojo, G., Horrocks, I.: Experiencing OptiqueVQS: a multi-paradigm and ontology-based Visual Query System for end users. Univ. Access Inf. Soc. 15(1), 129–152 (2016)CrossRefGoogle Scholar
  11. 11.
    Haag, F., Lohmann, S., Siek, S., Ertl, T.: QueryVOWL: visual composition of SPARQL queries. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9341, pp. 62–66. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25639-9_12. http://vowl.visualdataweb.org/queryvowl/CrossRefGoogle Scholar
  12. 12.
    Kapourani, B., Fotopoulou, E., Papaspyros, D., Zafeiropoulos, A., Mouzakitis, S., Koussouris, S.: Propelling SMEs business intelligence through linked data production and consumption. In: Ciuciu, I., et al. (eds.) OTM 2015. LNCS, vol. 9416, pp. 107–116. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26138-6_14CrossRefGoogle Scholar
  13. 13.
    Zviedris, M., Barzdins, G.: ViziQuer: a tool to explore and query SPARQL endpoints. In: Antoniou, G., et al. (eds.) ESWC 2011. LNCS, vol. 6644, pp. 441–445. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21064-8_31CrossRefGoogle Scholar
  14. 14.
    Čerāns, K., Ovčiņņikova, J., Zviedris, M.: SPARQL aggregate queries made easy with diagrammatic query language ViziQuer. In: Proceedings of the ISWC 2015 Posters & Demonstrations Track, vol. 1486. CEUR (2015). http://ceur-ws.org/Vol1486/paper_68.pdf
  15. 15.
    Čerāns, K., Ovčiņņikova, J.: ViziQuer: notation and tool for data analysis SPARQL queries. In: VOILA 2016, vol. 1704, pp. 151–159. CEUR Workshop Proceedings (2016)Google Scholar
  16. 16.
    Čerāns, K., et al.: Extended UML class diagram constructs for visual SPARQL queries in ViziQuer/web. In: Voila 2017, vol. 1947, pp. 87–98. CEUR Workshop Proceedings (2017)Google Scholar
  17. 17.
    Čerāns, K., et al.: ViziQuer: a web-based tool for visual diagrammatic queries over RDF data. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 158–163. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-98192-5_30CrossRefGoogle Scholar
  18. 18.
    Bārzdiņš, J., Grasmanis, M., Rencis, E., Šostaks, A., Bārzdiņš, J.: Ad-hoc querying of semistar data ontologies using controlled natural language. In: Arnicans, G., Arnicane, V., Borzovs, J., Niedrite, L. (eds.) Frontiers of AI and Applications. Databases and Information Systems IX, vol. 291, pp. 3–16. IOS Press, Amsterdam (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kārlis Čerāns
    • 1
    • 2
    Email author
  • Agris Šostaks
    • 1
    • 2
  • Uldis Bojārs
    • 1
    • 2
  • Juris Bārzdiņš
    • 3
  • Jūlija Ovčiņņikova
    • 1
    • 2
  • Lelde Lāce
    • 1
    • 2
  • Mikus Grasmanis
    • 1
  • Artūrs Sproģis
    • 1
  1. 1.Institute of Mathematics and Computer Science, University of LatviaRigaLatvia
  2. 2.Department of ComputingUniversity of LatviaRigaLatvia
  3. 3.Department of MedicineUniversity of LatviaRigaLatvia

Personalised recommendations