Towards a Knowledge Graph Based Platform for Public Procurement

  • Elena Simperl
  • Oscar Corcho
  • Marko Grobelnik
  • Dumitru Roman
  • Ahmet SoyluEmail author
  • María Jesús Fernández Ruíz
  • Stefano Gatti
  • Chris Taggart
  • Urška Skok Klima
  • Annie Ferrari Uliana
  • Ian Makgill
  • Till Christopher Lech
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 846)


Procurement affects virtually all sectors and organizations particularly in times of slow economic recovery and enhanced transparency. Public spending alone will soon exceed EUR 2 trillion per annum in the EU. Therefore, there is a pressing need for better insight into, and management of government spending. In the absence of data and tools to analyse and oversee this complex process, too little consideration is given to the development of vibrant, competitive economies when buying decisions are made. To this end, in this short paper, we report our ongoing work for enabling procurement data value chains through a knowledge graph based platform with data management, analytics, and interaction.


Procurement Knowledge graphs Analytics Interaction 


  1. 1.
    Alvarez-Rodríguez, J.M., et al.: New trends on e-procurement applying semantic technologies: current status and future challenges. Comput. Ind. 65(5), 800–820 (2014)CrossRefGoogle Scholar
  2. 2.
    Araújo, S., et al.: SERIMI: class-based matching for instance matching across heterogeneous datasets. IEEE Trans. Knowl. Data Eng. 27(5), 1397–1410 (2015)CrossRefGoogle Scholar
  3. 3.
    Biega, J., et al.: Inside YAGO2s: a transparent information extraction architecture. In: Proceedings of the 22nd International Conference on World Wide Web (WWW 2013), pp. 325–328. ACM, New York (2013)Google Scholar
  4. 4.
    Chandola, V., et al.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15:1–15:58 (2009)CrossRefGoogle Scholar
  5. 5.
    Distinto, I., et al.: LOTED2: an ontology of European public procurement notices. Semant. Web 7(3), 267–293 (2016)CrossRefGoogle Scholar
  6. 6.
    Dorneles, C.F., et al.: Approximate data instance matching: a survey. Knowl. Inf. Syst. 27(1), 1–21 (2011)CrossRefGoogle Scholar
  7. 7.
    Fortuna, B., et al.: A kernel canonical correlation analysis for learning the semantics of text. In: Kernel Methods in Bioengineering, Communications and Image Processing (2006)Google Scholar
  8. 8.
    Kharlamov, E., et al.: Ontology based data access in statoil. Web Semant.: Sci. Serv. Agents World Wide Web 44, 3–36 (2017)CrossRefGoogle Scholar
  9. 9.
    Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)Google Scholar
  10. 10.
    Muñoz-Soro, J.F., et al.: PPROC, an ontology for transparency in public procurement. Semant. Web 7(3), 295–309 (2016)CrossRefGoogle Scholar
  11. 11.
    Necaský, M., et al.: Linked data support for filing public contracts. Comput. Ind. 65(5), 862–877 (2014)CrossRefGoogle Scholar
  12. 12.
    Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8(3), 489–508 (2017)CrossRefGoogle Scholar
  13. 13.
    Portet, F., et al.: Automatic generation of textual summaries from neonatal intensive care data. Artif. Intell. 173(7), 789–816 (2009)CrossRefGoogle Scholar
  14. 14.
    Rodríguez, J.M.Á., et al.: Towards a Pan-European e-procurement platform to aggregate, publish and search public procurement notices powered by linked open data: the moldeas approach. Int. J. Softw. Eng. Knowl. Eng. 22(3), 365–384 (2012)CrossRefGoogle Scholar
  15. 15.
    Shanbhag, P., et al.: Temporal visualization of planning polygons for efficient partitioning of geo-spatial data. In: Proceedings of the IEEE Symposium on Information Visualization (InfoVis 2005). IEEE Computer Society, Washington, DC (2005)Google Scholar
  16. 16.
    Smith, M.A., et al.: Analyzing (social media) networks with NodeXL. In: Proceedings of the 4th International Conference on Communities and Technologies, pp. 255–264. ACM, New York (2009)Google Scholar
  17. 17.
    Suchanek, F.M., et al.: Knowledge bases in the age of big data analytics. Proc. VLDB Endowment 7(13), 1713–1714 (2014)CrossRefGoogle Scholar
  18. 18.
    Yan, J., et al.: A retrospective of knowledge graphs. Front. Comput. Sci. 12(1), 55–74 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elena Simperl
    • 1
  • Oscar Corcho
    • 2
  • Marko Grobelnik
    • 3
  • Dumitru Roman
    • 4
  • Ahmet Soylu
    • 4
    Email author
  • María Jesús Fernández Ruíz
    • 5
  • Stefano Gatti
    • 6
  • Chris Taggart
    • 7
  • Urška Skok Klima
    • 8
  • Annie Ferrari Uliana
    • 9
  • Ian Makgill
    • 10
  • Till Christopher Lech
    • 4
  1. 1.University of SouthamptonSouthamptonUK
  2. 2.Universidad Politécnica de MadridMadridSpain
  3. 3.Jožef Stefan InstituteLjubljanaSlovenia
  4. 4.SINTEF DigitalOsloNorway
  5. 5.Ayuntamiento de ZaragozaZaragozaSpain
  6. 6.Cerved Group Spa USMilanoItaly
  7. 7.OpenCorporates LtdLondonUK
  8. 8.Ministrstvo za javno upravoLjubljanaSlovenia
  9. 9.OESIA Networks SLMadridSpain
  10. 10.OpenOpps LtdLondonUK

Personalised recommendations