Advertisement

Connecting and Mapping LOD and CMDI Through Knowledge Organization

  • Francesca FallucchiEmail author
  • Ernesto William De Luca
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 846)

Abstract

This paper explains the connection and mapping of knowledge representations between RDF and CMDI. Therefore, the challenge is to create a bridge between Linked Open Data (LOD) and the Component MetaData Infrastructure (CMDI) to ensure that the limits of the two paradigms are compensated and strengthened to create a new hybrid approach. While on the one hand, CMDI is easier to use for modelling purposes, the Metadata is not descriptive enough for a document to be easily discoverable using Linked Data (LD) technologies to publish and to enrich the document’s content. Yet on the other hand, the explicit semantics and high interoperability of LOD have many advantages, but its modelling process is too complex for non-expert users. Here we show how knowledge organization plays a crucial role in this issue.

Keywords

Component MetaData Infrastructure (CMDI) Linked Open Data (LOD) Metadata for language resources Digital humanities Knowledge Organization (KO) 

References

  1. 1.
    Hjørland, B.: What is knowledge organization (KO)? Knowl. Organ. 35, 86–101 (2008)CrossRefGoogle Scholar
  2. 2.
    Luca, D., et al.: Using clustering methods to improve ontology-based query term disambiguation. Int. J. Intell. Syst. 21(7), 693–709 (2006)CrossRefGoogle Scholar
  3. 3.
    La Barre, K.: The use of faceted analytico-synthetic theory as revealed in the practice of website construction and design. Ph.D. dissertation, Indiana University (2006)Google Scholar
  4. 4.
    Plumbaum, T., et al.: User modeling for the social semantic web. In: Proceedings of the Second International Conference on Semantic Personalized Information Management: Retrieval and Recommendation - Volume 781, pp. 78–89. CEUR-WS.org (2011)Google Scholar
  5. 5.
    Lorenz, B.: Systematische Aufstellung in Vergangenheit und Gegenwart 2003 (2003)Google Scholar
  6. 6.
    Library of Congress Classification. https://www.loc.gov/catdir/cpso/lcco/
  7. 7.
  8. 8.
    Universal Decimal Classification. http://www.udcc.org/index.php/site/page?view=about
  9. 9.
    Dahlberg, I.: The information coding classification (ICC): a modern, theory-based fully-faceted, universal system of knowledge fields. Axiomathes 18(2), 161–176 (2008)CrossRefGoogle Scholar
  10. 10.
    Smith, M., et al.: Survey of Current Library Linked Data Implementation (2017). https://bibflow.library.ucdavis.edu/xi-survey-of-current-library-linked-data-implementation/
  11. 11.
    VIAF Homepage. https://viaf.org/
  12. 12.
    FAST Homepage. http://fast.oclc.org/
  13. 13.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)CrossRefGoogle Scholar
  14. 14.
    Hirst, G.: Ontology and the Lexicon. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 269–292. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-24750-0_11CrossRefGoogle Scholar
  15. 15.
    Buitelaar, P.: Ontology-based semantic lexicons: mapping between terms and object descriptions. In: Ontology and the Lexicon, pp. 212–223. Cambridge University Press (2010)Google Scholar
  16. 16.
    Kunze, C., et al.: Repräsentation und Verknüpfung allgemeinsprachlicher und terminologischer Wortnetze in OWL. Zeitschrift für Sprachwiss. 26(2), 267–290 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lüngen, H., et al.: Modelling and processing WordNets in OWL. In: Mehler, A., Kühnberger, K.U., Lobin, H., Lüngen, H., Storrer, A., Witt, A. (eds.) Modeling, Learning, and Processing of Text Technological Data Structures, pp. 347–376. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22613-7_17CrossRefGoogle Scholar
  18. 18.
    WordNet, A Lexical Database for English (2015). https://wordnet.princeton.edu/
  19. 19.
    Chiarcos, C., et al.: Towards a linguistic linked open data cloud: the open linguistics working group. Trait. Autom. des Langues 52(3), 245–275 (2011)Google Scholar
  20. 20.
    Pease, A., Fellbaum, C., Vossen, P.: Building the Global WordNet Grid (2008)Google Scholar
  21. 21.
    McCrae, P., et al.: Guidelines for Linguistic Linked Data Generation: WordNets (2015)Google Scholar
  22. 22.
    Van Assem, M., Gangemi, A., Schreiber, G.: Conversion of WordNet to a standard RDF/OWL representation. In: International Conference on Language Resources and Evaluation, pp. 237–242 (2006)Google Scholar
  23. 23.
    Raves, A., Gutierrez, C.: Data representations for WordNet: a case for RDF. In: Sojka, P., Choi, K.-S., Fellbaum, C., Vossen, P. (eds.) Proceedings of the 3rd International WORDNET Conference, pp. 165–169 (2006)Google Scholar
  24. 24.
    De Luca et al., Converting EuroWordNet in OWL and Extending It with Domain Ontologies (2007)Google Scholar
  25. 25.
    De Luca, E.W.: Aggregation and Maintenance of Multilingual Linked Data. Semi-Automatic Ontology Development: Processes and Resources Book. IGI Global, Pennsylvani (2012)Google Scholar
  26. 26.
    De Luca, E.W., Dahlberg, I.: Including knowledge domains from the ICC into the multilingual lexical linked data cloud, vol. 14 (2014)Google Scholar
  27. 27.
  28. 28.
    CMDI Metadata - The Language Archive. https://tla.mpi.nl/cmdi-metadata/
  29. 29.
    Beccaceci, R., et al.: Education with ‘living artworks’ in museums. In: CSEDU 2009 - Proceedings of the 1st International Conference on Computer Supported Education, vol. 1 (2009)Google Scholar
  30. 30.
    Arcidiacono, G., et al.: The use of lean six sigma methodology in digital curation. In: CEUR Workshop Proceedings, no. 2014 (2016)Google Scholar
  31. 31.
    Hernández, F., et al.: Building a cultural heritage ontology for Cantabria. In: Annual Conference of CIDOC Athens, pp. 1–14 (2008)Google Scholar
  32. 32.
    Hyvönen, E.: Publishing and using cultural heritage linked data on the semantic web. Synth. Lect. Semant. Web Theory Technol. 2(1), 1–159 (2012)CrossRefGoogle Scholar
  33. 33.
    Accardi, A.R.D., et al.: Digital museums of the imagined architecture: an integrated approach. DISEGNARECON 9, 15.1–15.11 (2016)Google Scholar
  34. 34.
    Fallucchi, F., et al.: Ontology-driven PA web hosting monitoring system, vol. 8842 (2014)Google Scholar
  35. 35.
    Bianchi,M., et al.: Service level agreement constraints into processes for document classification. In: ICEIS 2014-Proceedings of 16th International Conference on Enterprise Inform. Systems, vol. 1 (2014)Google Scholar
  36. 36.
    Fallucchi, F., et al.: Analysing and visualizing open data within the data & analytics framework. In: Digital Library Track 12th Metadata and Semantics Research Conference (2018)Google Scholar
  37. 37.
    Zhang, D., et al.: A knowledge management framework for the support of decision making in humanitarian assistance/disaster relief. Knowl. Inf. Syst. 4(3), 370–385 (2002)CrossRefGoogle Scholar
  38. 38.
    Fallucchi, F., et al.: Supporting humanitarian logistics with intelligent applications for disaster management. INTELLI 2016, 64 (2016)Google Scholar
  39. 39.
    Fallucchi, F., Tarquini, M., De Luca, E.W.: Knowledge management for the support of logistics during humanitarian assistance and disaster relief (HADR). In: Díaz, P., Bellamine Ben Saoud, N., Dugdale, J., Hanachi, C. (eds.) ISCRAM-med 2016. LNBIP, vol. 265, pp. 226–233. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47093-1_19CrossRefGoogle Scholar
  40. 40.
    Ferroni, P., et al.: Risk assessment for venous thromboembolism in chemotherapy-treated ambulatory cancer patients. Med. Decis. Mak. 37(2), 234–242 (2017)CrossRefGoogle Scholar
  41. 41.
    Ferroni, P., et al.: Validation of a machine learning approach for venous thromboembolism risk prediction in oncology. Dis. Markers 2017, 1–7 (2017)CrossRefGoogle Scholar
  42. 42.
    Scarpato, N., et al.: E-health-IoT universe: a review. Int. J. Adv. Sci. Eng. Inf. Technol. 7(6), 2328–2336 (2017)CrossRefGoogle Scholar
  43. 43.
    Pieroni, A., et al.: Industry 4.0 revolution in autonomous and connected vehicle a non-conventional approach to manage big data. J. Theor. Appl. Inf. 96(1) (2018)Google Scholar
  44. 44.
    Pieroni, A., et al.: Smarter city: smart energy grid based on Blockchain technology. Int. J. Adv. Sci. Eng. Inf. Technol. 8(1), 298–306 (2018)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Zinn, C., Trippel, T., Kaminski, S., Dima, E.: Crosswalking from CMDI to dublin core and MARC 21. In: International Conference on Language Resources and Evaluation, no. i, pp. 2489–2495 (2016)Google Scholar
  46. 46.
    Hillmann, D.I., et al.: Metadata standards and applications. Ser. Libr. 54(1–2), 7–21 (2008)CrossRefGoogle Scholar
  47. 47.
  48. 48.
    The Dublin Core to MARC crosswalk. http://www.loc.gov/marc/dccross.html
  49. 49.
    The MARC to Dublin Core crosswalk. http://www.loc.gov/marc/marc2dc.html
  50. 50.
    Woodley, M.S.: Crosswalks, metadata harvesting, federated searching, metasearching: using metadata to connect users and information. In: Introduction to Metadata, pp. 1–25 (2008)Google Scholar
  51. 51.
    Godby, C.J., et al.: A Repository of Metadata Crosswalks. D-Lib Mag. vol. 10, no. 12 (2004)Google Scholar
  52. 52.
    Pierre, M.S., LaPlant, W.P.: Issues in crosswalking content metadata standards. Bethesda MD Natl. Inf. Stand. Organ. 7, 01–16 (1998)Google Scholar
  53. 53.
    Broeder, D., Windhouwer, M., Van Uytvanck, D., Goosen, T., Trippel, T.: CMDI: a component metadata infrastructure. In: Describing LRs with Metadata: Towards Flexibility and Interoperability in the Documentation of LR Workshop Programme (2012)Google Scholar
  54. 54.
    Zhang, J., Kemps-Snijders, M., Bennis, H.: The CMDI MI search engine: access to language resources and tools using heterogeneous metadata schemas. In: Zaphiris, P., Buchanan, G., Rasmussen, E., Loizides, F. (eds.) TPDL 2012. LNCS, vol. 7489, pp. 492–495. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33290-6_57CrossRefGoogle Scholar
  55. 55.
    Fallucchi, F., et al.: Creating CMDI-profiles for textbook resources. In: Digital Library Track 12th Metadata and Semantics Research Conference 23–26 October 2018, Limassol, Cyprus (2018)Google Scholar
  56. 56.
  57. 57.
    Lampert, C.K., Southwick, S.B.: Leading to linking: introducing linked data to academic library digital collections. J. Libr. Metadata 13(2–3), 230–253 (2013)CrossRefGoogle Scholar
  58. 58.
    Southwick, S.B.: A guide for transforming digital collections metadata into linked data using open source technologies. J. Libr. Metadata 15(1), 1–35 (2015)CrossRefGoogle Scholar
  59. 59.
    Scarpato, N., Alessio, G.: SAGG: a novel linked data visualization approach. J. Theor. Appl. Inf. 95(22), 6192–6203 (2017)Google Scholar
  60. 60.
    Lillo, R.: Data and analytics framework. how public sector can profit from its immense asset, data. In: Leuzzi, F., Ferilli, S. (eds.) TRAP 2017. AISC, vol. 728, pp. 3–9. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75608-0_1CrossRefGoogle Scholar
  61. 61.
    Haslhofer, B., et al.: The OAI2LOD Server:Exposing OAI-PMH Metadata as LD (2008)Google Scholar
  62. 62.
  63. 63.
  64. 64.
    Konstantinou, N., Spanos, D.-E.: Creating linked data from relational databases. Materializing the Web of Linked Data, pp. 73–102. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16074-0_4CrossRefGoogle Scholar
  65. 65.
    Koutsomitropoulos, D.A., et al.: Herding linked data: semantic search and navigation among scholarly datasets. Int. J. Semant. Comput. 09(04), 459–482 (2015)CrossRefGoogle Scholar
  66. 66.
    Vila-Suero, D., et al.: A library linked dataset. Semant. Web 4(3), 307–313 (2013)Google Scholar
  67. 67.
  68. 68.
    Durco, M., et al.: From CLARIN component metadata to linked open data. In: Proceedings of the 3° Workshop on LD in Linguistics (LDL 2014).LREC 2014. Reykjavik, Icel (2014)Google Scholar
  69. 69.
    Windhouwer, M., et al.: CMD2RDF: building a bridge from CLARIN to linked open data. In: Data Archiving and Networked Services (DANS), pp. 95–103. Ubiquity Press (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.DIII, Guglielmo Marconi UniversityRomeItaly
  2. 2.DIFI, Georg Eckert InstituteBraunschweigGermany

Personalised recommendations