Advertisement

Heterogeneous Exascale Computing

  • Ladislav HluchýEmail author
  • Martin Bobák
  • Henning Müller
  • Mara Graziani
  • Jason Maassen
  • Hanno Spreeuw
  • Matti Heikkurinen
  • Jörg Pancake-Steeg
  • Stefan Spahr
  • Nils Otto vor dem Gentschen Felde
  • Maximilian Höb
  • Jan Schmidt
  • Adam S. Z. Belloum
  • Reginald Cushing
  • Piotr Nowakowski
  • Jan Meizner
  • Katarzyna Rycerz
  • Bartosz Wilk
  • Marian Bubak
  • Ondrej Habala
  • Martin Šeleng
  • Štefan Dlugolinský
  • Viet Tran
  • Giang Nguyen
Chapter
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 14)

Abstract

Exascale services bring new unique challenges that the current computational, big data and workflow solutions are unable to meet. The chapter includes a detailed description of selected exascale services with known state of the art in extreme date solutions. The integration of requirements and the analysis of the state of the art in the exascale field is centered in on a description of a high-level architectural approach. The next main contribution of the paper is the description of the architecture capable to handle heterogeneous exascale services coming from both academic as well as industrial sphere. Those two models represent a (conceptual, and technological) design of a platform that addresses the requirements of the use cases. The resulting architecture will help us provide computing solutions to exascale challenges within the H2020 project PROCESS.

Notes

Acknowledgements

This work is supported by projects EU H2020-777533 PROCESS PROviding Computing solutions for ExaScale ChallengeS, APVV-17-0619, and VEGA 2/0167/16.

References

  1. 1.
    R. Agarwal, G. Juve, E. Deelman, Peer-to-peer data sharing for scientific workflows on amazon ec2, in 2012 SC Companion: High Performance Computing, Networking, Storage and Analysis (SCC) (IEEE, 2012), pp. 82–89Google Scholar
  2. 2.
    B. Allcock, I. Mandrichenko, T. Perelmutov, Gridftp v2 protocol description. GridFTP Working Group, Technical report, 2005Google Scholar
  3. 3.
    S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford, J. Dongarra, D. Kothe, R. Lusk, P. Messina, et al., The opportunities and challenges of exascale computing–summary report of the advanced scientific computing advisory committee (ASCAC) subcommittee. US Department of Energy Office of Science (2010)Google Scholar
  4. 4.
    M. Bobák, A.S.Z. Belloum, P. Nowakowski, J. Meizner, M. Bubak, M. Heikkurinen, O. Habala, L. Hluchý, Exascale computing and data architectures for brownfield applications, in 2018 14th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) (IEEE, 2018), pp. 461–468Google Scholar
  5. 5.
    J. Chen, A. Choudhary, S. Feldman, B. Hendrickson, C. Johnson, R. Mount, V. Sarkar, V. White, D. Williams, Synergistic challenges in data-intensive science and exascale computing: doe ASCAC data subcommittee report (2013)Google Scholar
  6. 6.
    L.B. Costa, H. Yang, E. Vairavanathan, A. Barros, K. Maheshwari, G. Fedak, D. Katz, M. Wilde, M. Ripeanu, S. Al-Kiswany, The case for workflow-aware storage: an opportunity study. J. Grid Comput. 13(1), 95–113 (2015)CrossRefGoogle Scholar
  7. 7.
    F. Dottori, P. Salamon, A. Bianchi, L. Alfieri, F.A. Hirpa, L. Feyen, Development and evaluation of a framework for global flood hazard mapping. Adv. Water Resour. 94, 87–102 (2016)CrossRefGoogle Scholar
  8. 8.
    K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778Google Scholar
  9. 9.
    O. Jimenez-del Toro, S. Otálora, M. Andersson, K. Eurén, M. Hedlund, M. Rousson, H. Müller, M. Atzori, Analysis of histopathology images: from traditional machine learning to deep learning, in Biomedical Texture Analysis (Elsevier, Amsterdam, 2018), pp. 281–314Google Scholar
  10. 10.
    M. Kluge, S. Simms, T. William, R. Henschel, A. Georgi, C. Meyer, M.S. Mueller, C.A. Stewart, W. Wünsch, W.E. Nagel, Performance and quality of service of data and video movement over a 100 gbps testbed. Futur. Gener. Comput. Syst. 29(1), 230–240 (2013)CrossRefGoogle Scholar
  11. 11.
    D. Kreutz, F.M. Ramos, P.E. Verissimo, C.E. Rothenberg, S. Azodolmolky, S. Uhlig, Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)CrossRefGoogle Scholar
  12. 12.
    Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang, Learning efficient convolutional networks through network slimming, in 2017 IEEE International Conference on Computer Vision (ICCV) (IEEE, 2017), pp. 2755–2763Google Scholar
  13. 13.
    G. Montavon, W. Samek, K.-R. Müller, Methods for interpreting and understanding deep neural networks. Digit. Signal Process. (2017)Google Scholar
  14. 14.
    R. Rudari, F. Silvestro, L. Campo, N. Rebora, G. Boni, CIMA Research Foundation, C. Herold, UNEP-GRID, Improvement of the global food model for the gar 2015. Global Assessment Report on Disaster Risk Reduction 2015 (2015)Google Scholar
  15. 15.
    T. Shimwell, H. Röttgering, P.N. Best, W. Williams, T. Dijkema, F. De Gasperin, M. Hardcastle, G. Heald, D. Hoang, A. Horneffer et al., The lofar two-metre sky survey-i. Survey description and preliminary data release. Astron. Astrophys. 598, A104 (2017)CrossRefGoogle Scholar
  16. 16.
    A. Sim, A. Shoshani, The storage resource manager interface specification, version 2.2, in CERN, FNAL, JLAB, LBNL and RAL (Citeseerx, 2007)Google Scholar
  17. 17.
    A. Simonet, G. Fedak, M. Ripeanu, Active data: a programming model to manage data life cycle across heterogeneous systems and infrastructures. Futur. Gener. Comput. Syst. 53, 25–42 (2015)CrossRefGoogle Scholar
  18. 18.
    Storage Networking Industry Association. Cloud data management interface (CDMI) (2010)Google Scholar
  19. 19.
    C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE conference on computer vision and pattern recognition (2015), pp. 1–9Google Scholar
  20. 20.
    R. Tudoran, A. Costan, O. Nano, I. Santos, H. Soncu, G. Antoniu, Jetstream: enabling high throughput live event streaming on multi-site clouds. Futur. Gener. Comput. Syst. 54, 274–291 (2016)CrossRefGoogle Scholar
  21. 21.
    L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, D. Chen, G-hadoop: mapreduce across distributed data centers for data-intensive computing. Futur. Gener. Comput. Syst. 29(3), 739–750 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ladislav Hluchý
    • 1
    Email author
  • Martin Bobák
    • 1
  • Henning Müller
    • 2
  • Mara Graziani
    • 2
  • Jason Maassen
    • 3
  • Hanno Spreeuw
    • 3
  • Matti Heikkurinen
    • 2
  • Jörg Pancake-Steeg
    • 4
  • Stefan Spahr
    • 4
  • Nils Otto vor dem Gentschen Felde
    • 5
  • Maximilian Höb
    • 5
  • Jan Schmidt
    • 5
  • Adam S. Z. Belloum
    • 6
  • Reginald Cushing
    • 6
  • Piotr Nowakowski
    • 7
  • Jan Meizner
    • 7
  • Katarzyna Rycerz
    • 7
  • Bartosz Wilk
    • 7
  • Marian Bubak
    • 7
  • Ondrej Habala
    • 1
  • Martin Šeleng
    • 1
  • Štefan Dlugolinský
    • 1
  • Viet Tran
    • 1
  • Giang Nguyen
    • 1
  1. 1.Institute of InformaticsSlovak Academy of SciencesBratislavaSlovakia
  2. 2.University of Applied Sciences Western Switzerland (HES-SO)SierreSwitzerland
  3. 3.Netherlands eScience CenterAmsterdamNetherlands
  4. 4.Lufthansa SystemsBerlinGermany
  5. 5.Ludwig-Maximilians UniversitaetMunichGermany
  6. 6.Informatics InstituteUniversity of AmsterdamAmsterdamNetherlands
  7. 7.ACC Cyfronet AGHAGH University of Science and TechnologyKrakowPoland

Personalised recommendations