A Priori Membership for Data Representation: Case Study of SPECT Heart Data Set

  • Hamido FujitaEmail author
  • Yu-Chien Ko
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 14)


The image is important source for analytics. However, global reductions and local features are hard to solve. This paper proposes an innovative membership for data representation thus providing an easier and simpler way for both. Technically, it adopts relevant preference for inference. In this paper, its operations include reducing variables and identifying sparse features by taking advantage of evidence. In illustration, an image study of proton emission in UCI SPECT is presented. It discloses key variables of abnormal samples buried in normal range. The contribution of this paper lies in providing priori data to enhance representation learning.


Analytics Image Data representation Priori data Evidence 


  1. 1.
    X. Zhu, S. Zhang, R. Hu, Y. Zhu, J. Song, Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Trans. Knowl. Data Eng. 30(3), 517–529 (2018). Scholar
  2. 2.
    D. Wang, F. Nie, H. Huang, Feature selection via global redundancy minimization. IEEE Trans. Knowl. Data Eng. 27(10), 2743–2755 (2015). Scholar
  3. 3.
    L. Baroffio, A. Canclini, M. Cesana, A. Redondi, M. Tagliasacchi, S. Tubaro, Coding local and global binary visual features extracted from video sequences. IEEE Trans. Image Process. 24(11), 3546–3560 (2015). Scholar
  4. 4.
    C. Cui, K.N. Ngan, Global propagation of affine invariant features for robust matching. IEEE Trans. Image Process. 22(7), 2876–2888 (2013). Scholar
  5. 5.
    A. Astrom, R. Forchheimer, J. Eklund, Global feature extraction operations for near-sensor image processing. IEEE Trans. Image Process. 5(1), 102–110 (1996). Scholar
  6. 6.
    G. Liu, Z. Lin, Y. Yu, Robust subspace segmentation by low-rank representation, in Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10 (Omnipress, USA, 2010), pp. 663–670,
  7. 7.
    Y. Zhang, Z. Jiang, L.S. Davis, Learning structured low-rank representations for image classification, in 2013 IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 676–683.
  8. 8.
    Y.-C. Ko, H. Fujita, Evidential probability of signals on a price herd predictions: case study on solar energy companies. Int. J. Approx. Reason. 92, 255–269 (2018).,
  9. 9.
    G.F. Tzortzis, A.C. Likas, The global kernel\(k\)-means algorithm for clustering in feature space. IEEE Trans. Neural Netw. 20(7), 1181–1194 (2009). Scholar
  10. 10.
    J. Chai, H. Liu, Z. Bao, Combinatorial discriminant analysis: supervised feature extraction that integrates global and local criteria. Electron. Lett. 45(18), 934–935 (2009). Scholar
  11. 11.
    Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013). Scholar
  12. 12.
    Y. Bengio, O. Delalleau, N.L. Roux, The curse of highly variable functions for local kernel machines, in Advances in Neural Information Processing Systems 18, ed. by Y. Weiss, B. Schölkopf, J.C. Platt (MIT Press, Cambridge, 2006), pp. 107–114,
  13. 13.
    T. Davenport, Competing on analytics. Harv. Bus. Rev. 84, 98–107, 134 (2006)Google Scholar
  14. 14.
    H. Chen, R.H.L. Chiang, V.C. Storey, Business intelligence and analytics: from big data to big impact. MIS Q. 36(4), 1165–1188 (2012),
  15. 15.
    S. LaValle, E. Lesser, R. Shockley, M.S. Hopkins, N. Kruschwitz, Big data, analytics and the path from insights to value. MIT Sloan Manag. Rev. 52(2), 21–32 (2011)Google Scholar
  16. 16.
    T.H. Davenport, D.J. Patil, Data scientist: the sexiest job of the 21st century. Harv. Bus. Rev. 90(10), 70–76 (2012),
  17. 17.
    M. Kim, T. Zimmermann, R. DeLine, A. Begel, The emerging role of data scientists on software development teams, in Proceedings of the 38th International Conference on Software Engineering, ICSE ’16 (ACM, New York, 2016), pp. 96–107.,
  18. 18.
  19. 19.
    Z. Pawlak, Granularity of knowledge, indiscernibility and rough sets, in Proceedings of the 1998 IEEE International Conference on Fuzzy Systems. IEEE World Congress on Computational Intelligence, vol. 1 (1998) pp. 106–110Google Scholar
  20. 20.
    Y. Yao, Rough sets, neighborhood systems and granular computing, in 1999 IEEE Canadian Conference on Electrical and Computer Engineering, vol. 3 (1999), pp. 1553–1558Google Scholar
  21. 21.
    S. Greco, B. Matarazzo, R. Slowinski, Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)CrossRefGoogle Scholar
  22. 22.
    Z. Pawlak, Rough probability. Bull. Polish Acad. Sci. Math 32(9–10), 607–612 (1984)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Z. Pawlak, Rough sets, rough relations and rough functions. Fundam. Inf. 27(2–3), 103–108 (1996),
  24. 24.
    Z. Pawlak, Rough set approach to knowledge-based decision support. Eur. J. Oper. Res. 99(1), 48–57 (1997).,
  25. 25.
    R. Slowinski, J. Stefanowski, Rough classification in incomplete information systems. Math. Comput. Model. 12(10–11), 1347–1357 (1989)CrossRefGoogle Scholar
  26. 26.
    T. Denoeux, L.M. Zouhal, Handling possibilistic labels in pattern classification using evidential reasoning. Fuzzy Sets Syst. 122(3), 409–424 (2001).,
  27. 27.
    S. Greco, B. Matarazzo, R. Slowinski, Rough approximation by dominance relations. Int. J. Intell. Syst. 17(2), 153–171 (2002)CrossRefGoogle Scholar
  28. 28.
    R. Slowinski, S. Greco, B. Matarazzo, Rough sets in decision making, in Encyclopedia of Complexity and Systems Science, ed. by A.R. Meyers (Springer, New York, 2009), pp. 7753–7787CrossRefGoogle Scholar
  29. 29.
    M.G. Augeri, P. Cozzo, S. Greco, Dominance-based rough set approach: an application case study for setting speed limits for vehicles in speed controlled zones. Knowl. Based Syst. 89, 288–300 (2015). Scholar
  30. 30.
    J.A. Camilo, L.M. Collins, J.M. Malof, A large comparison of feature-based approaches for buried target classification in forward-looking ground-penetrating radar. IEEE Trans. Geosci. Remote. Sens. 56(1), 547–558 (2018). Scholar
  31. 31.
    B. Thompson, J. Cartmill, M.R. Azimi-Sadjadi, S.G. Schock, A multichannel canonical correlation analysis feature extraction with application to buried underwater target classification, in Proceedings of the 2006 IEEE International Joint Conference on Neural Network (2006), pp. 4413–4420.
  32. 32.
    T. Denoeux, O. Kanjanatarakul, S. Sriboonchitta, Ek-nnclus: a clustering procedure based on the evidential k-nearest neighbor rule. Knowl. Based Syst. 88, 57–69 (2015).,
  33. 33.
    T. Denoeux, S. Sriboonchitta, O. Kanjanatarakul, Evidential clustering of large dissimilarity data. Knowl. Based Syst. 106, 179–195 (2016).,
  34. 34.
    Y. Ma, J. Wright, A.Y. Yang, Wiki Home (2018),
  35. 35.
    E.J. Candes, X. Li, Y. Ma, J. Wright, Robust principal component analysis?. J. ACM 58(3), 11:1–11:37 (2011).,

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Information TechnologyHo Chi Minh City University of Technology (HUTECH)Ho Chi Minh CityVietnam
  2. 2.Software and Information ScienceIwate Prefectural UniversityTakizawaJapan
  3. 3.Department of Information ManagementChung Hua UniversityHsinchuTaiwan

Personalised recommendations