Advertisement

Managing Disruptions and the Ripple Effect in Digital Supply Chains: Empirical Case Studies

  • Ajay Das
  • Simone Gottlieb
  • Dmitry IvanovEmail author
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 276)

Abstract

This chapter studies the impact of accelerating digitalization on supply chain risk management. The interrelationships between digital technologies and supply chain disruption risk are analyzed using multiple case studies from various industries. The empirical analysis guided a conceptual framework based on extant theory and specific hypotheses. The chapter concludes with a discussion of research opportunities for future study. In particular, the discussion involves perspectives and future transformations that can be expected in the transition toward cyber-physical supply chains.

Keywords

Digital supply chain Supply chain risk management Supply chain resilience Industry 4.0 Big data analytics Ripple effect 

References

  1. Addo-Tenkorang, R., & Helo, P. T. (2016). Big data applications in operations/supply-chain management: A literature review. Computers & Industrial Engineering, 101, 528–543.CrossRefGoogle Scholar
  2. Baryannis, G., Validi, S., Dani S., & Antoniou, G. (2018). Supply chain risk management and artificial intelligence: State of the art and future research directions. International Journal of Production Research.  https://doi.org/10.1080/00207543.2018.1530476.CrossRefGoogle Scholar
  3. Ben-Daya, M., Hassini E., & Bahroun Z. (2018). Internet of things and supply chain management: A literature review. International Journal of Production Research.  https://doi.org/10.1080/00207543.2017.1402140.
  4. Blackhurst, J., Dunn, K., & Craighead, C. W. (2011). An empirically derived framework of global supply resiliency. Journal of Business Logistics, 32, 374–391.CrossRefGoogle Scholar
  5. Choi, T.-M. (2018a). A system of systems approach for global supply chain management in the big data era. IEEE Engineering Management Review, 46(1), 91–97.CrossRefGoogle Scholar
  6. Choi, T. M., Chan, H. K., & Yue, X. (2017). Recent development in big data analytics for business operations and risk management. IEEE Transactions on Cybernetics, 47(1), 81–92.CrossRefGoogle Scholar
  7. Choi, T. M., & Lambert, J. H. (2017). Advances in risk analysis with big data. Risk Analysis, 37(8), 1435–1442.CrossRefGoogle Scholar
  8. Choi, T. M., Wallace S. W., & Wang Y. (2018). Big data analytics in operations management. Production and Operations Management.  https://doi.org/10.1111/poms.12838.CrossRefGoogle Scholar
  9. Dolgui, A., Ivanov, D., Potryasaev, S., Sokolov, B., Ivanova, M., Werner, F. (2019a). Blockchain-oriented dynamic modelling of smart contract design and execution control in the supply chain. International Journal of Production Research, in press.Google Scholar
  10. Dolgui, A., Ivanov, D., Sethi, S., Sokolov, B. (2019b). Scheduling in production, supply chain and Industry 4.0 systems by optimal control: fundamentals, state-of-the-art, and applications. International Journal of Production Research, 57(2), 411–432.CrossRefGoogle Scholar
  11. Dolgui, A., Ivanov, D., & Sokolov, B. (2018). Ripple effect in the supply chain: An analysis and recent literature. International Journal of Production Research, 56(1–2), 414–430.CrossRefGoogle Scholar
  12. Fazili, M., Venkatadri, U., Cyrus, P., & Tajbakhsh, M. (2017). Physical Internet, conventional and hybrid logistic systems: A routing optimisation-based comparison using the Eastern Canada road network case study. International Journal of Production Research, 55(9), 2703–2730.CrossRefGoogle Scholar
  13. Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., et al. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308–317.CrossRefGoogle Scholar
  14. Gunasekaran, A., Tiwari, M. K., Dubey, R., & Wamba, S. F. (2016). Big data and predictive analytics applications in supply chain management. Computers & Industrial Engineering, 101, 525–527.CrossRefGoogle Scholar
  15. Gunasekaran, A., Yusuf, Y. Y., Adeleye, E. O., & Papadopoulos, T. (2018). Agile manufacturing practices: The role of big data and business analytics with multiple case studies. International Journal of Production Research, 56(1–2), 385–397.CrossRefGoogle Scholar
  16. Ivanov, D. (2017). Simulation-based single vs dual sourcing analysis in the supply chain with consideration of capacity disruptions, Big Data and demand patterns. International Journal of Integrated Supply Management, 11(1), 24–43.CrossRefGoogle Scholar
  17. Ivanov, D. (2018a). Structural dynamics and resilience in supply chain risk management. New York: Springer.CrossRefGoogle Scholar
  18. Ivanov, D. (2018b). Revealing interfaces of supply chain resilience and sustainability: A simulation study. International Journal of Production Research, 56(10), 3507–3523.CrossRefGoogle Scholar
  19. Ivanov, D., & Dolgui, A. (2019). Low-Certainty-Need (LCN) Supply Chains: A new perspective in managing disruption risks and resilience. International Journal of Production Research, in press.Google Scholar
  20. Ivanov, D., Dolgui, A., & Sokolov, B. (2013). Multi-disciplinary analysis of interfaces “Supply Chain Event Management—RFID—Control Theory”. International Journal of Integrated Supply Management, 8, 52–66.CrossRefGoogle Scholar
  21. Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829–846.Google Scholar
  22. Ivanov, D., Dolgui, A., Sokolov, B., & Ivanova, M. (2017). Literature review on disruption recovery in the supply chain. International Journal of Production Research, 55(20), 6158–6174.CrossRefGoogle Scholar
  23. Ivanov, D., Sethi, S., Dolgui, A., Sokolov, B. (2018). A survey on the control theory applications to operational systems, supply chain management and Industry 4.0. Annual Reviews in Control, 46, 134–147.CrossRefGoogle Scholar
  24. Ivanov, D., Sokolov, B., & Dolgui, A. (2014a). The Ripple effect in supply chains: Trade-off ‘efficiency-flexibility-resilience’ in disruption management. International Journal of Production Research, 52(7), 2154–2172.CrossRefGoogle Scholar
  25. Ivanov, D., Sokolov, B., Dolgui, A., Werner, F., & Ivanova, M. (2016). A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory Industry 4.0. International Journal of Production Research, 54(2), 386–402.Google Scholar
  26. Ivanov, D., Sokolov, B., & Pavlov, A. (2014b). Optimal distribution (re)planning in a centralized multi-stage network under conditions of ripple effect and structure dynamics. European Journal of Operational Research, 237(2), 758–770.CrossRefGoogle Scholar
  27. Liao, Y., Deschamps, Y., de Freitas, E., Loures R., & LFP Ramos. (2017). Past, present and future of Industry 4.0—a systematic literature review and research agenda proposal. International Journal of Production Research, 55(12), 3609–3629.Google Scholar
  28. Moghaddam, M., & Nof, S. Y. (2018). Collaborative service-component integration in cloud manufacturing. International Journal of Production Research, 56(1–2), 677–691.CrossRefGoogle Scholar
  29. Nguyen, T., Zhou, L., Spiegler, V., Ieromonachou, P., & Lin, Y. (2018). Big data analytics in supply chain management: A state-of-the-art literature review. Computers & Operations Research, 98, 254–264.CrossRefGoogle Scholar
  30. Panetto, H., Iung, B., Ivanov, D., Weichhart, G., Wang, X. (2019). Challenges for the cyber-physical manufacturing enterprises of the future. Annual Reviews in Control. https://doi.org/10.1016/j.arcontrol.2019.02.002.
  31. Papadopoulos, T., Gunasekaran, A., Dubey, R., Altay, N., Childe, S. J., & Wamba, S. F. (2017). The role of Big Data in explaining disaster resilience in supply chains for sustainability. Journal of Cleaner Production, 142(2), 1108–1118.CrossRefGoogle Scholar
  32. Pavlov, A., Ivanov, D., Dolgui, A., & Sokolov, B. (2018). Hybrid fuzzy-probabilistic approach to supply chain resilience assessment. IEEE Transactions on Engineering Management, 65(2), 303–315.CrossRefGoogle Scholar
  33. Priore, P., Ponte, B., Rosillo, R., & de la Fuente, D. (2018). Applying machine learning to the dynamic selection of replenishment policies in fast-changing supply chain environments. International Journal of Production Research.  https://doi.org/10.1080/00207543.2018.1552369.
  34. Qu, T., Thürer, M., Wang, J., Wang, Z., Fu, H., Li, C., et al. (2017). System dynamics analysis for an Internet-of-Things-enabled production logistics system. International Journal of Production Research, 55(9), 2622–2649.CrossRefGoogle Scholar
  35. Rossit, D. A., Tohmé, F., & Frutos, M. (2018) Industry 4.0: Smart scheduling. International Journal of Production Research.  https://doi.org/10.1080/00207543.2018.1504248.
  36. Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2018). Blockchain technology and supply chain management. International Journal of Production Research.Google Scholar
  37. Schlüter, F., Hetterscheid, E., & Henke, M. (2017). A simulation-based evaluation approach for digitalization scenarios in smart supply chain risk management. Journal of Industrial Engineering and Management Science, 1, 179–206.CrossRefGoogle Scholar
  38. Simchi-Levi, D., Schmidt, W., Wei, Y., Zhang, P. Y., Combs, K., Ge, Y., et al. (2015). Identifying risks and mitigating disruptions in the automotive supply chain. Interfaces, 45(5), 375–390.CrossRefGoogle Scholar
  39. Sokolov, B., Ivanov, D., Dolgui, A., & Pavlov, A. (2016). Structural quantification of the ripple effect in the supply chain. International Journal of Production Research, 54(1), 152–169.CrossRefGoogle Scholar
  40. Strozzi, F., Colicchia, C., Creazza, A., & Noè, C. (2017). Literature review on the ‘Smart Factory’ concept using bibliometric tools. International Journal of Production Research, 55(22), 6572–6591.CrossRefGoogle Scholar
  41. Tran-Dang, H., Krommenacker, N., & Charpentier, P. (2017). Containers monitoring through the Physical Internet: A spatial 3D model based on wireless sensor networks. International Journal of Production Research, 55(9), 2650–2663.CrossRefGoogle Scholar
  42. Yang, Y., Pan, S., & Ballot, E. (2017). Innovative vendor-managed inventory strategy exploiting interconnected logistics services in the Physical Internet. International Journal of Production Research, 55(9), 2685–2702.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Narendra Paul Loomba Department of ManagementZicklin School of Business, CUNY-Baruch, One Bernard Baruch WayNew YorkUSA
  2. 2.Department of Business and EconomicsBerlin School of Economics and LawBerlinGermany

Personalised recommendations