Advertisement

A Note on the Sidelnikov-Shestakov Attack of Niederreiter Scheme

  • Dingyi Pei
  • Jingang LiuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11449)

Abstract

The terminology “code based public-key cryptosystem” means that the algorithmic primitives of such public-key cryptosystems use error correcting codes. In papers [1, 2] methods of building such public-key cryptosystems have been suggested. The Niederreiter’s public-key cryptosystem [2] based on q-ary generalized Reed-Solomon codes was proposed in 1986, Sidelnikov and Shestakov [3] presented an attack on this public-key cryptosystem in 1992, showing its insecurity. By examining the attack algorithm, we note that one can change some redundant procedures to simplify the algorithm.

Keywords

Code-based cryptography Niederreiter encryption GRS codes Sidelnikov-Shestakov attack 

Notes

Acknowledgments

The authors would like to thank the anonymous reviewers of Inscrypt 2018 for their fruitful comments that improved the presentation of this note. This work has been partially supported by the Guangzhou University project (Project No. 2017GDJC-D04).

References

  1. 1.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep space network progress report, 42–44, pp. 114–116 (1978)Google Scholar
  2. 2.
    Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob. Control Inf. Theory 15(2), 159–166 (1986)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on generalized Reed-Solomon codes. Discrete Math. Appl. 2(4), 439–444 (1992)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, L., Chen, L., Jordan, S., Liu, Y.-K., Moody, D., et al.: Report on post-quantum cryptography. Technical reports (2016).  https://doi.org/10.6028/nist.ir.8105
  5. 5.
    Couvreur, A., Gaborit, P., Gauthier-Umana, V., et al.: Distinguisher-based attacks on public-key cryptosystems using Reed–Solomon codes. Des. codes Crypt. 73(2), 641–666 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Couvreur, A., Otmani, A., Tillich, J.P.: Polynomial time attack on wild McEliece over quadratic extensions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 17–39. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_2CrossRefGoogle Scholar
  7. 7.
    Engelbert, D., Overbeck, R., Schmidt, A.: A summary of McEliece-type cryptosystems and their security. J. Math. Cryptol. 1(2), 151–199 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Overbeck, R., Sendrier, N.: Code-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 95–145. Springer, Berlin, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-88702-7_4CrossRefzbMATHGoogle Scholar
  9. 9.
    Gabidulin, E.: Public-key cryptosystems based on linear codes. In: Proceedings of 4th IMA Conference on Cryptography and Coding 1993, Codes & Ciphers. IMA Press (1995)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceGuangzhou UniversityGuangzhouPeople’s Republic of China

Personalised recommendations