Advertisement

Chemical Recycling of Electronic-Waste for Clean Fuel Production

  • Jayaseelan Arun
  • Kannappan Panchamoorthy GopinathEmail author
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 33)

Abstract

Electronic-waste was the main waste stream raising concern to the researchers globally. Improper recycling and disposal techniques resulted in solemn effects on the atmosphere and public well-being. This chapter explains the systematic methods used for management of Electronic-waste. Electronic-waste managing would be an ideal start-up business platform toward energy production and metal recovery. The recycling pathways are designed by considering the current industrial reality and design strategies. Chemical recycling is a compilation of pyrolysis, catalytic cracking/upgrading, gasification, and chemolysis methods. Pyrolyzing of Electronic-waste prior to catalytic cracking method yielded high-quality oil. This oil can be further upgraded into clean fuels. Integrated process (pyrolysis and catalytic upgrading) results in considerable financial and ecological benefits during processing Electronic-waste into clean fuels.

Keywords

Electronic-waste chemical recycling Clean fuel Energy Valuable chemical Plastics Hydrothermal Gasification Combustion Environment 

References

  1. Abduli MA, Naghib A, Yonesi M, Akbari A (2011) Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill. Environ Monit Assess 178:487–498CrossRefGoogle Scholar
  2. Abnisa F, Daud WMAW (2014) A review on co-pyrolysis of biomass: an optional technique to obtain high-grade pyrolysis oil. Energy Convers Manag 87:71–85CrossRefGoogle Scholar
  3. Balaz P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin/HeidelbergGoogle Scholar
  4. Balaz P, Achimovieova M, Balaz M, Billik P, Cherkezova-Zheleva Z, Criado JM et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571CrossRefGoogle Scholar
  5. Balde C, Wang F, Kuehr R, Huisman J (2015) The global electronic waste monitor. United Nations University, IAS–SCYCLE, BonnGoogle Scholar
  6. Bhaskar T, Matsui T, Kaneko J, Uddin MA, Muto A, Sakata Y (2002) Novel calcium based sorbent (Ca-C) for the dehalogenation (Br, Cl) process during halogenated mixed plastic (PP/PE/PS/PVC and HIPS-Br) pyrolysis. Green Chem 4:372–375CrossRefGoogle Scholar
  7. Bian J, Bai H, Li W, Yin J, Xu H (2016) Comparative environmental life cycle assessment of waste mobile phone recycling in China. J Clean Prod 131:209–218CrossRefGoogle Scholar
  8. British Plastics Federation (2008) Oil consumption: what happens to plastics when the oil runs out and when will it run out. Available from: http://www.bpf.co.uk/press/Oil_Consumption.aspx
  9. Buratti C, Barbanera M, Testarmata F, Fantozzi F (2015) Life cycle assessment of organic waste management strategies: an Italian case study. J Clean Prod 89:125–136CrossRefGoogle Scholar
  10. De-Souza RG, Climaco JCN, Sant’Anna AP, Rocha TB, do Valle RDB, Quelhas OLG (2016) Sustainability assessment and prioritisation of electronic waste management options in Brazil. Waste Manag 57:46–56CrossRefGoogle Scholar
  11. Erses-Yay AS (2015) Application of life cycle assessment (LCA) for municipal solid waste management: a case study of Sakarya. J Clean Prod 94:284–293CrossRefGoogle Scholar
  12. Freegard K, Tan G, Coggins-Wamtech C, Environmental DFD, Alger M, Cracknell P et al (2006) Develop a process to separate brominated flame retardants from WASTE ELECTRICAL AND ELECTRONIC EQUIPMENTS polymers. (Final Report). The Waste & Resources Action Programme, LondonGoogle Scholar
  13. Fujimori T, Takigami H, Agusa T, Eguchi A, Bekki K, Yoshida A, Terazono A, Ballesteros FC (2012) Impact of metals in surface matrices from formal and informal electronic-waste recycling around Metro Manila, the Philippines, and intra-Asian comparison. J Hazard Mater 221:139–146CrossRefGoogle Scholar
  14. Grause G, Karakita D, Ishibashi J, Kameda T, Bhaskar T, Yoshioka T (2011) TGMS investigation of brominated products from the degradation of brominated flame retardants in high-impact polystyrene. Chemosphere 85:368–373CrossRefGoogle Scholar
  15. Grause G, Fonseca JD, Tanaka H, Bhaskar T, Kameda T, Yoshioka T (2015) A novel process for the removal of bromine from styrene polymers containing brominated flame retardant. Polym Degrad Stab 112:86–93CrossRefGoogle Scholar
  16. Guo J, Guo J, Xu ZM (2009) Recycling of non-metallic fractions from waste printed circuit boards: a review. J Hazard Mater 168:567–590CrossRefGoogle Scholar
  17. Guo X, Xiang D, Duan G, Mou P (2010) A review of mechanochemistry applications in waste management. Waste Manag 30:4–10CrossRefGoogle Scholar
  18. Hall WJ, Williams PT (2006) Pyrolysis of brominated feedstock plastic in a fluidised bed reactor. J Anal Appl Pyrolysis 77:75–82CrossRefGoogle Scholar
  19. Hansen LA, Nielsen HP, Frandsen FJ, Dam-Johansen K, Hørlyck S, Karlsson A (2000) Influence of deposit formation on corrosion at a straw-fired boiler. Fuel Process Technol 64:189–209CrossRefGoogle Scholar
  20. Hong J, Shi W, Wang Y, Chen W, Li X (2015) Life cycle assessment of electronic waste treatment. Waste Manag 38:357–365CrossRefGoogle Scholar
  21. Hossain M, Al-Hamadani S, Rahman R (2015) Electronic waste: a challenge for sustainable development. J Health Pollut 5:550–555Google Scholar
  22. Huang Q, Liu W, Peng P, Huang W (2013) Reductive debromination of tetra bromobisphenol a by Pd/Fe bimetallic catalysts. Chemosphere 92:1321–1327CrossRefGoogle Scholar
  23. Huisman J, Magalini F, Kuehr R, Maurer C, Ogilvie S, Poll J et al (2008) Review of directive 2002/96 on waste electrical and electronic equipment (WASTE ELECTRICAL AND ELECTRONIC EQUIPMENTS). United Nations University, BonnGoogle Scholar
  24. Ikhlayel M (2017) Environmental impacts and benefits of state-of-the-art technologies for electronic waste management. Waste Manag 68:458–474CrossRefGoogle Scholar
  25. Ikhlayel M, Higano Y, Yabar H, Mizunoya T (2016) Introducing an integrated municipal solid waste management system: assessment in Jordan. J Sustain Dev 9:43CrossRefGoogle Scholar
  26. Jiang P, Harney M, Song Y, Chen B, Chen Q, Chen T, Lazarus G, Dubois LH, Korzenski MB (2012) Improving the end-of-life for electronic materials via sustainable recycling methods. Procedia Environ Sci 16:485–490CrossRefGoogle Scholar
  27. Jin Y, Tao L, Chi Y, Yan J (2011) Conversion of bromine during thermal decomposition of printed circuit boards at high temperature. J Hazard Mater 186:707–712CrossRefGoogle Scholar
  28. Jung SH, Kim SJ, Kim JS (2012) Thermal degradation of acrylonitrile–butadiene– styrene (ABS) containing flame retardants using a fluidized bed reactor: the effects of ca-based additives on halogen removal. Fuel Process Technol 96:265–270CrossRefGoogle Scholar
  29. Leung A, Cai ZW, Wong MH (2006) Environmental contamination from electronic waste recycling at Guiyu, Southeast China. J Mater Cycles Waste Manage 8:21–33CrossRefGoogle Scholar
  30. Li J, Zeng X, Chen M, Ogunseitan OA, Stevels A (2015) “Control-Alt-Delete”: rebooting solutions for the electronic waste problem. Environ Sci Technol 49:7095–7108CrossRefGoogle Scholar
  31. Lopez A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A (2011) Dechlorination of fuels in pyrolysis of PVC containing plastic wastes. Fuel Process Technol 92:253–260CrossRefGoogle Scholar
  32. Lopez G, Ekiaga A, Amutio M, Bilbao J, Olazar M (2015) Effect of polyethylene co-feeding in the steam gasification of biomass in a conical spouted bed reactor. Fuel 153:393–401CrossRefGoogle Scholar
  33. McCann D, Wittmann A (2015) Solving the electronic waste problem (Step) green paper: E- waste Prevention, take-back system design and policy approaches. United Nations University/Step Initiative, GermanyGoogle Scholar
  34. Miskolczi N, Hall WJ, Angyal A, Bartha L, Williams PT (2008) Production of oil with low organobromine content from the pyrolysis of flame retarded HIPS and ABS plastics. J Anal Appl Pyrolsis 83:115–123CrossRefGoogle Scholar
  35. Nnorom IC, Osibanjo O (2008a) Overview of electronic waste (electronic waste) management practices and legislations, and their poor applications in the developing countries. Resour Conserv Recycl 52:843–858CrossRefGoogle Scholar
  36. Nnorom IC, Osibanjo O (2008b) Sound management of brominated flame retarded (BFR) plastics from electronic wastes: state of the art and options in Nigeria. Resour Conserv Recycl 52:1362–1372CrossRefGoogle Scholar
  37. Ongondo FO, Williams ID, Cherrett TJ (2011) How are WASTE ELECTRICAL AND ELECTRONIC EQUIPMENTS doing? A global review of the management of electrical and electronic wastes. Waste Manag 31:714–730CrossRefGoogle Scholar
  38. Perez-Belis V, Bovea M, Ibanez-Fores V (2015) An in-depth literature review of the waste electrical and electronic equipment context: trends and evolution. Waste Manag Res 33:3–29CrossRefGoogle Scholar
  39. Rahmani M, Nabizadeh R, Yaghmaeian K, Mahvi AH, Yunesian M (2014) Estimation of waste from computers and mobile phones in Iran. Resour Conserv Recycl 87:21–29CrossRefGoogle Scholar
  40. Seitz J (2014) Analysis of existing electronic waste practices in MENA countries. The regional solid waste exchange of information and expertise network in Mashreq and Maghreb Countries (SWEEP-Net)Google Scholar
  41. SEPA (2011) Recycling and disposal of electronic waste: health hazards and environmental impacts. Naturvårdsverket, StockholmGoogle Scholar
  42. Shen Y, Zhao R, Wang J, Chen X, Ge X, Chen M (2016) Waste-to-energy: De-halogenation of plastic-containing wastes. Waste Manag 49:287–303CrossRefGoogle Scholar
  43. Shen Y, Chen X, Ge X, Chen M (2018) Chemical pyrolysis of electronic waste plastics: char characterization. J Environ Manag 214:94–103CrossRefGoogle Scholar
  44. Shibasaki Y, Kamimori T, Kadokawa J, Hatano B, Tagaya H (2004) Decomposition reactions of plastic model compounds in sub and supercritical water. Polym Degrad Stab 83:481–485CrossRefGoogle Scholar
  45. Song Q, Li J (2015) A review on human health consequences of metals exposure to electronic waste in China. Environ Pollut 196:450–461CrossRefGoogle Scholar
  46. Song QB, Wang ZS, Li JH (2013) Sustainability evaluation of electronic waste treatment based on emergy analysis and the LCA method: a case study of a trial project in Macau. Ecol Indic 30:138–147CrossRefGoogle Scholar
  47. Starnes WH (2012) How and to what extent are free radicals involved in the nonoxidative thermal dehydrochlorination of poly (vinyl chloride)? J Vinyl Addit Technol 18:71–75CrossRefGoogle Scholar
  48. Stevels A, Huisman J, Wang F, Li J, Li B, Duan H (2013) Take back and treatment of discarded electronics: a scientific update. Front Environ Sci Eng 7:475–482CrossRefGoogle Scholar
  49. Thanh NP, Matsui Y (2013) Assessment of potential impacts of municipal solid waste treatment alternatives by using life cycle approach: a case study in Vietnam. Environ Monit Assess 185:7993–8004CrossRefGoogle Scholar
  50. Vehlow J, Bergfeldt B, Hunsinger H, Seifert H, Mark FE (2003) Bromine in waste incineration: partitioning and influence on metal volatilisation. Environ Sci Pollut Res Int 10:329–334CrossRefGoogle Scholar
  51. Vilaplana F, Karlsson S (2008) Quality concepts for the improved use of recycled polymeric materials: a review. Macromol Mater Eng 293:274–297CrossRefGoogle Scholar
  52. Wang Y, Zhang FS (2012) Degradation of brominated flame retardant in computer housing plastic by supercritical fluids. J Hazard Mater 205–206:156–163CrossRefGoogle Scholar
  53. Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Boni H (2005) Global perspectives on electronic waste. Environ Impact Assess Rev 25:436–458CrossRefGoogle Scholar
  54. William JH, Paul TW (2007) Separation and recovery of materials from scrap printed circuit boards. Res Conserv Recycl 51:691–709CrossRefGoogle Scholar
  55. Wu C, Williams PT (2013) Advanced thermal treatment of wastes for fuels, chemicals and materials recovery. In: Hester RE, Harrison RM (eds) Waste as a resource. The Royal Society of Chemistry, Cambridge, pp 1–43Google Scholar
  56. Wu H, Shen Y, Harada N, An Q, Yoshikawa K (2014) Production of pyrolysis oil with low bromine and antimony contents from plastic material containing brominated flame retardants and antimony trioxide. Energy Environ Res 4:105–118CrossRefGoogle Scholar
  57. Xue M, Kendall A, Xu Z, Schoenung JM (2015) Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining. Environ Sci Technol 49:940–947CrossRefGoogle Scholar
  58. Yan W, Hastings JT, Acharjee TC, Coronella CJ, Vásquez VR (2010) Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuel 24:4738–4742CrossRefGoogle Scholar
  59. Yu J, Sun L, Ma C, Qiao Y, Yao H (2016) Thermal degradation of PVC: a review. Waste Manag 48:300–314CrossRefGoogle Scholar
  60. Zhang S, Yoshikawa K, Nakagome H, Kamo T (2013) Kinetics of the steam gasification of a phenolic circuit board in the presence of carbonates. Appl Energy 101:815–821CrossRefGoogle Scholar
  61. Zhuang Y, Ahn S, Seyfferth AL, Masue-Slowey Y, Fendorf S, Luthy RG (2011) Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron. Environ Sci Technol 45:4896–4903CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jayaseelan Arun
    • 1
  • Kannappan Panchamoorthy Gopinath
    • 1
    Email author
  1. 1.Department of Chemical EngineeringSSN College of EngineeringKalavakkamIndia

Personalised recommendations