Advertisement

Partial and Full Goal Satisfaction in the MUSA Middleware

  • Massimo Cossentino
  • Luca SabatucciEmail author
  • Salvatore Lopes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11450)

Abstract

Classical goal-based reasoning frameworks for agents suppose goals are either achieved fully or not achieved at all: unless achieved completely, the agents have failed to address them. This behavior is different from how people do and therefore is far from real-world scenarios: in every moment a goal has reached a certain level of satisfaction.

This work proposes to extend the classical boolean definition of goal achievement by adopting a novel approach, the Distance to Goal Satisfaction, a metric to measure the distance to the full satisfaction of a logic formula.

In this paper we defined and implemented this metric; subsequently, we extended MUSA, a self-adaptive middleware used to engineer a heterogeneous range of applications. This extension allows solving real situations in which the full achievement represented a limitation.

Keywords

Partial goal satisfaction Metric Multi-agent system 

References

  1. 1.
    Agnello, L., Cossentino, M., De Simone, G., Sabatucci, L.: Shipboard power systems reconfiguration: a compared analysis of state-of-the-art approaches. In: Smart Ships Technology 2017, pp. 1–9. Royal Institution of Naval Architects (RINA) (2017)Google Scholar
  2. 2.
    Bordini, R., Hübner, J., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak Using Jason, vol. 8. Wiley-Interscience, Chichester (2007)zbMATHGoogle Scholar
  3. 3.
    Gelfond, M., Lifschitz, V.: Action languages. Comput. Inf. Sci. 3(16), 1–16 (1998)Google Scholar
  4. 4.
    Jackson, M.: Problem Frames: Analysing and Structuring Software Development Problems. Addison Wisley, Boston (2001)Google Scholar
  5. 5.
    Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In: Proceedings of the 17th International Conference on Software Engineering, ICSE 1995, pp. 15–24. ACM, New York (1995).  https://doi.org/10.1145/225014.225016
  6. 6.
    Letier, E., Van Lamsweerde, A.: Reasoning about partial goal satisfaction for requirements and design engineering. In: ACM SIGSOFT Software Engineering Notes, vol. 29, pp. 53–62. ACM (2004)Google Scholar
  7. 7.
    Namiot, D., Sneps-Sneppe, M.: On micro-services architecture. Int. J. Open Inf. Technol. 2(9), 24–27 (2014)Google Scholar
  8. 8.
    Napoli, C.D., Valentino, M., Sabatucci, L., Cossentino, M.: Adaptive workflows of home-care services. In: Proceedings of 27th IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE 2018 (2018)Google Scholar
  9. 9.
    Ricci, A., Viroli, M., Omicini, A.: CArtAgO: a framework for prototyping artifact-based environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71103-2_4CrossRefGoogle Scholar
  10. 10.
    Sabatucci, L., Cavaleri, A., Cossentino, M.: Adopting a middleware for self-adaptation in the development of a smart travel system. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) Intelligent Interactive Multimedia Systems and Services 2016. SIST, vol. 55, pp. 671–681. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39345-2_60CrossRefGoogle Scholar
  11. 11.
    Sabatucci, L., Cossentino, M.: From means-end analysis to proactive means-end reasoning. In: Proceedings of the 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 2–12. IEEE Press (2015)Google Scholar
  12. 12.
    Sabatucci, L., Cossentino, M., Simone, G.D., Lopes, S.: Self-reconfiguration of shipboard power systems. In: Proceedings of the 3rd eCAS Workshop on Engineering Collective Adaptive Systems (2018)Google Scholar
  13. 13.
    Sabatucci, L., Lopes, S., Cossentino, M.: MUSA 2.0: a distributed and scalable middleware for user-driven service adaptation. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) KES-IIMSS 2017. SIST, vol. 76, pp. 492–501. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-59480-4_49CrossRefGoogle Scholar
  14. 14.
    Sabatucci, L., Ribino, P., Lodato, C., Lopes, S., Cossentino, M.: GoalSPEC: a goal specification language supporting adaptivity and evolution. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, pp. 235–254. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45343-4_13CrossRefGoogle Scholar
  15. 15.
    Thangarajah, J., Harland, J., Morley, D.N., Yorke-Smith, N.: Quantifying the completeness of goals in BDI agent systems. In: Proceedings of the Twenty-First European Conference on Artificial Intelligence, pp. 879–884. IOS Press (2014)Google Scholar
  16. 16.
    Thangarajah, J., Harland, J., Yorke-Smith, N.: Estimating the progress of maintenance goals. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 1645–1646. International Foundation for Autonomous Agents and Multiagent Systems (2015)Google Scholar
  17. 17.
    van Riemsdijk, M.B., Yorke-Smith, N.: Towards reasoning with partial goal satisfaction in intelligent agents. In: Collier, R., Dix, J., Novák, P. (eds.) ProMAS 2010. LNCS (LNAI), vol. 6599, pp. 41–59. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28939-2_3CrossRefGoogle Scholar
  18. 18.
    Vukovic, M., Robinson, P.: GoalMorph: partial goal satisfaction for flexible service composition. In: 2005 International Conference on Next Generation Web Services Practices, NWeSP 2005, pp. 6-pp. IEEE (2005)Google Scholar
  19. 19.
    Zhou, Y., Chen, X.: Partial implication semantics for desirable propositions. In: KR, pp. 606–612 (2004)Google Scholar
  20. 20.
    Zhou, Y., Van Der Torre, L., Zhang, Y.: Partial goal satisfaction and goal change: weak and strong partial implication, logical properties, complexity. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 413–420. International Foundation for Autonomous Agents and Multiagent Systems (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Massimo Cossentino
    • 1
  • Luca Sabatucci
    • 1
    Email author
  • Salvatore Lopes
    • 1
  1. 1.National Research Council, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR-CNR)PalermoItaly

Personalised recommendations