Advertisement

Haplotype and Repeat Separation in Long Reads

  • German Tischler-HöhleEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10834)

Abstract

Resolving the correct structure and succession of highly similar sequence stretches is one of the main open problems in genome assembly. For non haploid genomes this includes determining the sequences of the different haplotypes. For all but the smallest genomes it also involves separating different repeat instances. In this paper we discuss methods for resolving such problems in third generation long reads by classifying alignments between long reads according to whether they represent true or false read overlaps. The main problem in this context is the high error rate found in such reads, which greatly exceeds the variance between the similar regions we want to separate. Our methods can separate read classes stemming from regions with as little as \(1\%\) difference.

Notes

Acknowledgments

We thank Gene Myers for interesting algorithmical discussions related to this paper and Shilpa Garg for advice on running WhatsHap.

References

  1. 1.
    Myers, G.: Efficient local alignment discovery amongst noisy long reads. In: Brown, D., Morgenstern, B. (eds.) WABI 2014. LNCS, vol. 8701, pp. 52–67. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44753-6_5CrossRefGoogle Scholar
  2. 2.
    Tischler, G., Myers, E.W.: Non hybrid long read consensus using local de bruijn graph assembly. bioRxiv (2017). https://www.biorxiv.org/content/early/2017/02/06/106252
  3. 3.
    Patterson, M., Marschall, T., Pisanti, N., van Iersel, L., Stougie, L., Klau, G.W., Schönhuth, A.: WhatsHap: haplotype assembly for future-generation sequencing reads. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol. 8394, pp. 237–249. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-05269-4_19CrossRefGoogle Scholar
  4. 4.
    Murray, P., et al.: Whatshap: weighted haplotype assembly for future-generation sequencing reads. J. Comput. Biol. 22(6), 498–509 (2015).  https://doi.org/10.1089/cmb.2014.0157. pMID: 25658651CrossRefGoogle Scholar
  5. 5.
    Martin, M., et al.: Whatshap: fast and accurate read-based phasing. bioRxiv (2016). https://www.biorxiv.org/content/early/2016/11/14/085050
  6. 6.
    Bansal, V., Halpern, A.L., Axelrod, N., Bafna, V.: An MCMC algorithm for haplotype assembly from whole-genome sequence data. Genome Res. 18(8), 1336–1346 (2008). http://genome.cshlp.org/content/18/8/1336.abstractCrossRefGoogle Scholar
  7. 7.
    Bansal, V., Bafna, V.: Hapcut: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics 24(16), i153–i159 (2008). https://doi.org/10.1093/bioinformatics/btn298CrossRefGoogle Scholar
  8. 8.
    Mazrouee, S., Wang, W.: Fasthap: fast and accurate single individual haplotype reconstruction using fuzzy conflict graphs. Bioinformatics 30(17), i371–i378 (2014). btu442[PII], http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147895/CrossRefGoogle Scholar
  9. 9.
    Deng, F., Cui, W., Wang, L.: A highly accurate heuristic algorithm for the haplotype assembly problem. BMC Genomics 14(2), S2 (2013).  https://doi.org/10.1186/1471-2164-14-S2-S2CrossRefGoogle Scholar
  10. 10.
    Chin, C.S., et al.: Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050 EP (2016).  https://doi.org/10.1038/nmeth.4035. articleCrossRefGoogle Scholar
  11. 11.
    Chaisson, M.J., Mukherjee, S., Kannan, S., Eichler, E.E.: Resolving multicopy duplications de novo using polyploid phasing. In: Sahinalp, S.C. (ed.) RECOMB 2017. LNCS, vol. 10229, pp. 117–133. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56970-3_8CrossRefGoogle Scholar
  12. 12.
    Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., Phillippy, A.M.: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27(5), 722–736 (2017). http://genome.cshlp.org/content/27/5/722.abstractCrossRefGoogle Scholar
  13. 13.
    Carneiro, M.O., Russ, C., Ross, M.G., Gabriel, S.B., Nusbaum, C., DePristo, M.A.: Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genomics 13(1), 375 (2012).  https://doi.org/10.1186/1471-2164-13-375CrossRefGoogle Scholar
  14. 14.
    Escalona, M., Rocha, S., Posada, D.: A comparison of tools for the simulation of genomic next-generation sequencing data. Nat. Rev. Genet. 17(8), 459–469 (2016). 27320129[pmid]. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224698/CrossRefGoogle Scholar
  15. 15.
    Ono, Y., Asai, K., Hamada, M.: Pbsim: Pacbio reads simulator-toward accurate genome assembly. Bioinformatics 29(1), 119–121 (2013).  https://doi.org/10.1093/bioinformatics/bts649CrossRefGoogle Scholar
  16. 16.
    Garrison, E., Marth, G.: Haplotype-based variant detection from short-read sequencing. ArXiv e-prints (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Myers Lab, Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany

Personalised recommendations