Advertisement

Modelling the Accretion on Young Stars, Recent Results and Perspectives

  • L. de SáEmail author
  • C. Stehlé
  • J. P. Chièze
  • I. Hubeny
  • T. Lanz
  • S. Colombo
  • L. Ibgui
  • S. Orlando
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 55)

Summary

Despite intense observational work, the stellar accretion process is insufficiently constrained, and consequently the details in the exchange of mass and momentum between the proto-star and its accretion disk remain approximate.

We focus here on 1D simulations of accretion columns falling onto a stellar chromosphere. After the description of the method used for the radiative hydrodynamics, we first describe the mutual feedback between a dynamically heated chromosphere and the accretion process and the coupling between radiation and matter. Perspectives to this work will finally be presented.

Notes

Acknowledgements

These studies have been funded by the French “Programme National de Physique Stellaire” of INSU, the French Italian cooperation program PICS 6838 “Physics of Mass Accretion Processes in Young Stellar Objects”, the Observatoire de Paris and the LABEX PLAS@PAR (ANR-11-IDEX-0004-02).

References

  1. 1.
    Bonito R, Orlando S, Argiroffi C, Miceli M, Peres G, Matsakos T, Stehlé C, Ibgui L (2014) Magnetohydrodynamic Modeling of the Accretion Shocks in Classical T Tauri Stars: the Role of Local Absorption in the X-Ray Emission. Astrophys. J. 795(2):L34–ADSCrossRefGoogle Scholar
  2. 2.
    Brickhouse NS, Cranmer SR, Dupree AK, Luna GJM, Wolk SJ (2010) A deep Chandrax-ray spectrum of the accreting young star TW Hydrae. Astrophys. J. 710(2):1835–1847ADSCrossRefGoogle Scholar
  3. 3.
    Brown JC (1973) On the ionisation of hydrogen in optical flares. Sol. Phys. 29(2):421–427ADSCrossRefGoogle Scholar
  4. 4.
    Chièze JP, de Sá L, Stehlé C (2013) Hydrodynamic modeling of accretion shocks on a star with radiative transport and a chromospheric model. EAS Publications Series 58:143–147CrossRefGoogle Scholar
  5. 5.
    Colombo S, Orlando S, Peres G, Argiroffi C, Reale F (2016) Impacts of fragmented accretion streams onto classical T Tauri stars: UV and X-ray emission lines. Astron. Astrophys. 594:A93–ADSCrossRefGoogle Scholar
  6. 6.
    Costa G, Orlando S, Peres G, Argiroffi C, Bonito R (2017) Hydrodynamic modelling of accretion impacts in classical T Tauri stars: radiative heating of the pre-shock plasma. Astron. Astrophys. 597:A1ADSCrossRefGoogle Scholar
  7. 7.
    Drake JJ, Ratzlaff PW, Laming JM, Raymond JC (2009) An absence of X-ray accretion shock instability signatures in TW Hydrae. Astrophys. J. 703(2):1224–1229ADSCrossRefGoogle Scholar
  8. 8.
    Günther HM, Lewandowska N, Hundertmark MPG, Steinle H, Schmitt JHMM, Buckley D, Crawford S, O’Donoghue D, Vaisanen P (2010) The absence of sub-minute periodicity in classical T Tauri stars. Astron. Astrophys. 518:A54ADSCrossRefGoogle Scholar
  9. 9.
    Hubeny I, Lanz T (2017) A brief introductory guide to TLUSTY and SYNSPEC. eprint arXiv:170601859 pp –Google Scholar
  10. 10.
    Johns-Krull CM, Valenti JA, Hatzes AP, Kanaan A (1999) Spectropolarimetry of Magnetospheric Accretion on the Classical T Tauri Star BP Tauri. Astrophys. J. 510(1):L41–L44ADSCrossRefGoogle Scholar
  11. 11.
    Kastner JH, Huenemoerder DP, Schulz NS, Canizares CR, Weintraub DA (2002) Evidence for Accretion: High-Resolution X-Ray Spectroscopy of the Classical T Tauri Star TW Hydrae. Astrophys. J. 567(1):434–440ADSCrossRefGoogle Scholar
  12. 12.
    Kirienko AB (1993) Time-dependent radiative cooling of a hot, optically thin interstellar gas. Astron. Lett. 19:11–13ADSGoogle Scholar
  13. 13.
    Lowrie RB, Mihalas D, Morel JE (2001) Comoving-frame radiation transport for nonrelativistic fluid velocities. JQSRT 69(3):291–304ADSCrossRefGoogle Scholar
  14. 14.
    Matsakos T, Chièze JP, Stehlé C, González M, Ibgui L, de Sá L, Lanz T, Orlando S, Bonito R, Argiroffi C, Reale F, Peres G (2013) YSO accretion shocks: magnetic, chromospheric or stochastic flow effects can suppress fluctuations of X-ray emission. Astron. Astrophys. 557:A69CrossRefGoogle Scholar
  15. 15.
    Matsakos T, Chièze JP, Stehlé C, González M, Ibgui L, de Sá L, Lanz T, Orlando S, Bonito R, Argiroffi C, Reale F, Peres G (2014) 3D numerical modeling of YSO accretion shocks. EPJ Web of Conferences 64:04,003CrossRefGoogle Scholar
  16. 16.
    Orlando S, Sacco GG, Argiroffi C, Reale F, Peres G, Maggio A (2010) X-ray emitting MHD accretion shocks in classical T Tauri stars. Astron. Astrophys. 510:A71ADSCrossRefGoogle Scholar
  17. 17.
    Orlando S, Bonito R, Argiroffi C, Reale F, Peres G, Miceli M, Matsakos T, Stehlé C, Ibgui L, de Sá L, Chièze JP, Lanz T (2013) Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars. Astron. Astrophys.Google Scholar
  18. 18.
    Rammacher W, Ulmschneider P (1992) Acoustic waves in the solar atmosphere. IX - Three minute pulsations driven by shock overtaking. Astron. Astrophys. 253:586–600zbMATHGoogle Scholar
  19. 19.
    Romanova MM, Ustyugova GV, Koldoba AV, Wick JV, Lovelace RVE (2003) Three-dimensional Simulations of Disk Accretion to an Inclined Dipole. I. Magnetospheric Flows at Different Θ. Astrophys. J. 595(2):1009–1031Google Scholar
  20. 20.
    Romanova MM, Ustyugova GV, Koldoba AV, Lovelace RVE (2004) Three-dimensional Simulations of Disk Accretion to an Inclined Dipole. II. Hot Spots and Variability. Astrophys. J. 610(2):920–932ADSCrossRefGoogle Scholar
  21. 21.
    Romanova MM, Kulkarni AK, Lovelace RVE (2008) Unstable Disk Accretion onto Magnetized Stars: First Global Three-dimensional Magnetohydrodynamic Simulations. Astrophys. J. 673(2):L171–L174ADSCrossRefGoogle Scholar
  22. 22.
    de Sá L, Chièze JP, Stehlé C, Hubeny I, Delahaye F, Lanz T (2012) Hydrodynamic modeling of accretion shocks on a star with radiative transport and a chromospheric model. SF2A pp 309–312Google Scholar
  23. 23.
    de Sá L, Chièze JP, Stehlé C, Hubeny I, Lanz T, Delahaye F, Ibgui L (submitted) New insight on Young Stellar Objects accretion shocks. Astron. Astrophys.Google Scholar
  24. 24.
    Sacco GG, Argiroffi C, Orlando S, Maggio A, Peres G, Reale F (2008) X-ray emission from dense plasma in classical T Tauri stars: hydrodynamic modeling of the accretion shock. Astrophys. J. 491(2):L17–L20ADSGoogle Scholar
  25. 25.
    Sacco GG, Orlando S, Argiroffi C, Maggio A, Peres G, Reale F, Curran RL (2010) On the observability of T Tauri accretion shocks in the X-ray band. Astron. Astrophys. 522:A55ADSCrossRefGoogle Scholar
  26. 26.
    Vernazza JE, Avrett EH, Loeser R (1973) Structure of the Solar Chromosphere. I - Basic Computations and Summary of the Results. Astrophys. J. 184:605Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LERMA, Sorbonne Université, Observatoire de ParisUniversité PSL, CNRSParisFrance
  2. 2.CEA/DSM/IRFU/SAp-AIM, CEA Saclay, CNRSGif-sur-YvetteFrance
  3. 3.LERMA, Sorbonne Université, Observatoire de ParisUniversité PSL, CNRSParisFrance
  4. 4.Steward ObservatoryUniversity of ArizonaTucsonUSA
  5. 5.Observatoire de la Côte d’AzurNiceFrance
  6. 6.INAF-Osservatorio Astronomico di PalermoPalermoItaly
  7. 7.LERMA, Sorbonne Université, Observatoire de Paris, Université PSL, CNRSParisFrance
  8. 8.INAF-Osservatorio Astronomico di PalermoPalermoItaly

Personalised recommendations