Advertisement

Repetitive Transcranial Magnetic Stimulation

  • F. BrighinaEmail author
  • B. Fierro
  • G. Cosentino
Chapter
Part of the Headache book series (HEAD)

Abstract

Transcranial magnetic stimulation (TMS) represents a valuable neurophysiological technique useful for both research and clinical practice purposes [1]. TMS acts by inducing electrical fields which cause electric currents to flow in targeted cortical areas. These currents interact with the electrical activity of the brain and can depolarize cortical interneurons and/or projection neurons depending on the characteristics of the stimulation. The induced excitation can spread throughout the nervous system by the brain’s normal mechanisms of propagation of neuronal signals. In this way, TMS can also induce functional changes in areas remote to the stimulated cortical area, including both functionally connected cortical regions (even in the contralateral hemisphere) and subcortical structures. Among major advantages of TMS are noninvasiveness, repeatability, high spatial and temporal resolution, the ability to modulate and measure cortical excitability and plasticity, and the proven therapeutic efficacy for the treatment of different neurological and psychiatric disorders [2]. Furthermore, safety and tolerability of TMS have been clearly established by a large number of studies [3, 4].

References

  1. 1.
    Di Lazzaro V. Biological effects of non-invasive brain stimulation. Handb Clin Neurol. 2013;116:367–74.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Padberg F, Poulet E, Rossi S, Rossini PM, Rothwell JC, Schönfeldt-Lecuona C, Siebner HR, Slotema CW, Stagg CJ, Valls-Sole J, Ziemann U, Paulus W, Garcia-Larrea L. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014;125(11):2150–206.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Krishnan C, Santos L, Peterson MD, Ehinger M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul. 2015;8(1):76–87.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Barker AT, Shields K. Transcranial magnetic stimulation: basic principles and clinical applications in migraine. Headache. 2017;57(3):517–24.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Welch KM. Contemporary concepts of migraine pathogenesis. Neurology. 2003;28(61(8 Suppl. 4)):S2–8.CrossRefGoogle Scholar
  7. 7.
    Milner PM. Note on a possible correspondence between the scotomas of migraine and spreading depression of Leão. Electroencephalogr Clin Neurophysiol. 1958;10(4):705.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Amassian VE, Stewart M, Quirk GJ, et al. Physiological basis of motor effects of a transient stimulus to cerebral cortex. Neurosurgery. 1987;20:74–93.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Patton HD, Amassian VE. Single- and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol. 1954;17:345–63.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Di Lazzaro V, Ziemann U, Lemon RN. State of the art: physiology of transcranial motor cortex stimulation. Brain Stimul. 2008;1:345–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijevic MR, Hallett M, Katayama Y, Lücking CH, Maertens de Noordhout AL, Marsden CD, Murray NMF, Rothwell JC, Swash M. Electroencephalogr Clin Neurophysiol. 1994;91(2):79–92.Google Scholar
  12. 12.
    Mills KR, Nithi KA. Corticomotor threshold to magnetic stimulation: normal values and repeatability. Muscle Nerve. 1997;20(5):570–6.PubMedCrossRefGoogle Scholar
  13. 13.
    McConnell KA, Nahas Z, Shastri A, Lorberbaum JP, Kozel FA, Bohning DE, George MS. The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex. Biol Psychiatry. 2001;49(5):454–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W. Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol. 1996;40:367–78.PubMedCrossRefGoogle Scholar
  15. 15.
    Khedr EM, Ahmed MA, Mohamed KA. Motor and visual cortical excitability in migraineurs patients with or without aura: transcranial magnetic stimulation. Neurophysiol Clin. 2006;36:13–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Van der Kamp W, Maassen VanDenBrink A, Ferrari MD, Van Dijk JG. Interictal cortical hyperexcitability in migraine patients demonstrated with transcranial magnetic stimulation. J Neurol Sci. 1996;139:106–10.PubMedCrossRefGoogle Scholar
  17. 17.
    Afra J, Mascia A, Gérard P, de Noordhout Maertens A, Schoenen J. Interictal cortical excitability in migraine: a study using transcranial magnetic stimulation of motor and visual cortices. Ann Neurol. 1998;44:209–15.PubMedCrossRefGoogle Scholar
  18. 18.
    Bettucci D, Cantello R, Gianelli M, Naldi P, Mutani R. Menstrual migraine without aura: cortical excitability to magnetic stimulation. Headache. 1992;32(7):345–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Maertens de Noordhout A, Pepin JL, Schoenen J, Delwaide PJ. Percutaneous magnetic stimulation of the motor cortex in migraine. Electroencephalogr Clin Neurophysiol. 1992;85:110–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Schoenen J, Ambrosini A, Sandor PS, de Noordhout Maertens A. Evoked potentials and transcranial magnetic stimulation in migraine: published data and viewpoint on their pathophysiologic significance. Clin Neurophysiol. 2003;114:955–72.PubMedCrossRefGoogle Scholar
  21. 21.
    Bohotin V, Fumal A, Vandenheede M, Bohotin C, Schoenen J. Excitability of visual V1–V2 and motor cortices to single transcranial magnetic stimuli in migraine: a reappraisal using a figure-of-eight coil. Cephalalgia. 2003;23:264–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Brighina F, Piazza A, Daniele O, Fierro B. Modulation of visual cortical excitability in migraine with aura: effects of 1 Hz repetitive transcranial magnetic stimulation. Exp Brain Res. 2002;145:177–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Gunaydin S, Soysal A, Atay T, Arpaci B. Motor and occipital cortex excitability in migraine patients. Can J Neurol Sci. 2006;33:63–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Werhahn KJ, Wiseman K, Herzog J, Förderreuther S, Dichgans M, Straube A. Motor cortex excitability in patients with migraine with aura and hemiplegic migraine. Cephalalgia. 2000;20:45–50.PubMedCrossRefGoogle Scholar
  25. 25.
    Cortese F, Coppola G, Di Lenola D, Serrao M, Di Lorenzo C, Parisi V, Pierelli F. Excitability of the motor cortex in patients with migraine changes with the time elapsed from the last attack. J Headache Pain. 2017;18(1):2.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Boroojerdi B, Bushara KO, Corwell B, Immisch I, Battaglia F, Muellbacher W, et al. Enhanced excitability of the human visual cortex induced by short-term light deprivation. Cereb Cortex. 2000;10:529–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen R. Studies of human motor physiology with transcranial magnetic stimulation. Muscle Nerve Suppl. 2000;9:S26–32.PubMedCrossRefGoogle Scholar
  28. 28.
    Rothwell JC. Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods. 1997;74:113–221.PubMedCrossRefGoogle Scholar
  29. 29.
    Cosentino G, Fierro B, Vigneri S, Talamanca S, Palermo A, Puma A, et al. Impaired glutamatergic neurotransmission in migraine with aura? Evidence by an input–output curves transcranial magnetic stimulation study. Headache. 2011;51:726.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee CY, Chen CC, Liou HH. Levetiracetam inhibits glutamate transmission through presynaptic P/Q-type calcium channels on the granule cells of the dentate gyrus. Br J Pharmacol. 2009;158:1753–62.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Pisani A, Bonsi P, Martella G, et al. Intracellular calcium increase in epileptiform activity: modulation by levetiracetam and lamotrigine. Epilepsia. 2004;45:719–28.PubMedCrossRefGoogle Scholar
  32. 32.
    Reis J, Wentrup A, Hamer HM, et al. Levetiracetam influences human motor cortex excitability mainly by modulation of ion channel function – a TMS study. Epilepsy Res. 2004;62:41–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Sohn YH, Kaelin-Lang A, Jung HY, Hallett M. Effect of levetiracetam on human corticospinal excitability. Neurology. 2001;57:858–63.PubMedCrossRefGoogle Scholar
  34. 34.
    Fuhr P, Agostino R, Hallett M. Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol. 1991;81:257–62.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Chen R, Lozano AM, Ashby P. Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res. 1999;128:539–42.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Inghilleri M, Berardelli A, Marchetti P, Manfredi M. Effects of diazepam, baclofen and thiopental on the silent period evoked by transcranial magnetic stimulation in humans. Exp Brain Res. 1996;109:467–72.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    McDonnell MN, Orekhov Y, Ziemann U. The role of GABA(B) receptors in intracortical inhibition in the human motor cortex. Exp Brain Res. 2006;173:86–93.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Aurora SK, Al-Sayeed F, Welch KM. The cortical silent period is shortened in migraine with aura. Cephalalgia. 1999;19(8):708–12.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Curra A, Pierelli F, Coppola G, Barbanti P, Buzzi MG, Galeotti F, Serrao M, Truini A, Casali C, Pauri F, Cruccu G. Shortened cortical silent period in facial muscles of patients with migraine. Pain. 2007;132(1–2):124–31.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Currà A, Coppola G, Gorini M, Porretta E, Bracaglia M, Di Lorenzo C, Schoenen J, Pierelli F. Drug-induced changes in cortical inhibition in medication overuse headache. Cephalalgia. 2011;31(12):1282–90.PubMedCrossRefGoogle Scholar
  41. 41.
    Maier J, Sebastian I, Weisbrod M, Freitag CM, Resch F, Bender S. Cortical inhibition at rest and under a focused attention challenge in adults with migraine with and without aura. Cephalalgia. 2011;31(8):914–24.PubMedCrossRefGoogle Scholar
  42. 42.
    Neverdahl JP, Omland PM, Uglem M, Engstrøm M, Sand T. Reduced motor cortical inhibition in migraine: a blinded transcranial magnetic stimulation study. Clin Neurophysiol. 2017;128(12):2411–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Kammer T, Beck S, Erb M, Grodd W. The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation. Clin Neurophysiol. 2001;112(11):2015–21.PubMedCrossRefGoogle Scholar
  44. 44.
    Aurora SK, Ahmad BK, Welch KM, Bhardhwaj P, Ramadan NM. Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology. 1998;50(4):1111–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Aurora SK, Welch KM, Al-Sayed F. The threshold for phosphenes is lower in migraine. Cephalalgia. 2003;23(4):258–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Mulleners WM, Chronicle EP, Palmer JE, Koehler PJ, Vredeveld JW. Visual cortex excitability in migraine with and without aura. Headache. 2001a;41(6):565–72.PubMedCrossRefGoogle Scholar
  47. 47.
    Chadaide Z, Arlt S, Antal A, Nitsche MA, Lang N, Paulus W. Transcranial direct current stimulation reveals inhibitory deficiency in migraine. Cephalalgia. 2007;27(7):833–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Brigo F, Storti M, Nardone R, Fiaschi A, Bongiovanni LG, Tezzon F, Manganotti P. Transcranial magnetic stimulation of visual cortex in migraine patients: a systematic review with meta-analysis. J Headache Pain. 2012;13(5):339–49.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Cohen LG, Roth BJ, Nilsson J, Dang N, Panizza M, Bandinelli S, et al. Effects of coil design on delivery of focal magnetic stimulation technical considerations. Electroencephalogr Clin Neurophysiol. 1990;75:350–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Mulleners WM, Chronicle EP, Palmer JE, Koehler PJ, Vredeveld JW. Suppression of perception in migraine: evidence for reduced inhibition in the visual cortex. Neurology. 2001b;56(2):178–83.PubMedCrossRefGoogle Scholar
  51. 51.
    Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell A, Eberle L. Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol. 1989;74(6):458–62.PubMedCrossRefGoogle Scholar
  52. 52.
    Aurora SK, Barrodale P, Chronicle EP, Mulleners WM. Cortical inhibition is reduced in chronic and episodic migraine and demonstrates a spectrum of illness. Headache. 2005;45(5):546–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Battelli L, Black KR, Wray SH. Transcranial magnetic stimulation of visual area V5 in migraine. Neurology. 2002;58(7):1066–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501–19.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Valls-Solé J, Pascual-Leone A, Wassermann EM, Hallett M. Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalogr Clin Neurophysiol. 1992;85(6):355–64.PubMedCrossRefGoogle Scholar
  56. 56.
    Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, Rothwell JC. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol. 2000;111(5):794–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, Müller-Dahlhaus F. TMS and drugs revisited 2014. Clin Neurophysiol. 2015;126(10):1847–68.PubMedCrossRefGoogle Scholar
  58. 58.
    Di Lazzaro V, Rothwell J, Capogna M. Noninvasive stimulation of the human brain: activation of multiple cortical circuits. Neuroscientist. 2018;24(3):246–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Wiegel P, Niemann N, Rothwell JC, Leukel C. Evidence for a subcortical contribution to intracortical facilitation. Eur J Neurosci. 2018;47(11):1311–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Opie GM, Rogasch NC, Goldsworthy MR, Ridding MC, Semmler JG. Investigating TMS-EEG indices of long-interval intracortical inhibition at different interstimulus intervals. Brain Stimul. 2017;10(1):65–74.PubMedCrossRefGoogle Scholar
  61. 61.
    Di Lazzaro V, Oliviero A, Mazzone P, Pilato F, Saturno E, Insola A, et al. Direct demonstration of long latency cortico-cortical inhibition in normal subjects and in a patient with vascular parkinsonism. Clin Neurophysiol. 2002;113:1673–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H. Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol Lond. 1997;498:817–23.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Cosentino G, Fierro B, Brighina F. From different neurophysiological methods to conflicting pathophysiological views in migraine: a critical review of literature. Clin Neurophysiol. 2014a;125(9):1721–30.PubMedCrossRefGoogle Scholar
  64. 64.
    Nguyen BN, McKendrick AM, Vingrys AJ. Abnormal inhibition-excitation imbalance in migraine. Cephalalgia. 2016;36(1):5–14.PubMedCrossRefGoogle Scholar
  65. 65.
    Brighina F, Giglia G, Scalia S, Francolini M, Palermo A, Fierro B. Facilitatory effects of 1 Hz rTMS in motor cortex of patients affected by migraine with aura. Exp Brain Res. 2005;161:34–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Brighina F, Palermo A, Daniele O, Aloisio A, Fierro B. High-frequency transcranial magnetic stimulation on motor cortex of patients affected by migraine with aura: a way to restore normal cortical excitability? Cephalalgia: an International Journal of Headache. 2010;30:46–52.CrossRefGoogle Scholar
  67. 67.
    Siniatchkin M, Kröner-Herwig B, Kocabiyik E, Rothenberger A. Intracortical inhibition and facilitation in migraine – a transcranial magnetic stimulation study. Headache. 2007;47:364–70.PubMedCrossRefGoogle Scholar
  68. 68.
    Cosentino G, Di Marco S, Ferlisi S, Valentino F, Capitano WM, Fierro B, Brighina F. Intracortical facilitation within the migraine motor cortex depends on the stimulation intensity. A paired-pulse TMS study. J Headache Pain. 2018;19(1):65.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gerwig M, Niehaus L, Kastrup O, Stude P, Diener HC. Visual cortex excitability in migraine evaluated by single and paired magnetic stimuli. Headache. 2005;45:1394–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Bliss TV, Gardner-Medwin AR. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol. 1973;232(2):357–74.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hoogendam JM, Ramakers GM, Di Lazzaro V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul. 2010;3(2):95–118.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Fitzgerald PB, Brown TL, Daskalakis ZJ, Chen R, Kulkarni J. Intensity-dependent effects of 1 Hz rTMS on human corticospinal excitability. Clin Neurophysiol. 2002;113(7):1136–41.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Peinemann A, Reimer B, Löer C, Quartarone A, Münchau A, Conrad B, Siebner HR. Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex. Clin Neurophysiol. 2004;115(7):1519–26.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;19(55):187–99.CrossRefGoogle Scholar
  75. 75.
    Lisman J, Spruston N. Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. Nat Neurosci. 2005;8:839–41.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Inghilleri M, Conte A, Frasca V, Gilio F, Lorenzano C, Berardelli A. Synaptic potentiation induced by rTMS: effect of lidocaine infusion. Exp Brain Res. 2005;163(1):114–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain. 1994;117(Pt 4):847–58.PubMedCrossRefGoogle Scholar
  78. 78.
    Brighina F, Cosentino G, Vigneri S, Talamanca S, Palermo A, Giglia G, Fierro B. Abnormal facilitatory mechanisms in motor cortex of migraine with aura. Eur J Pain. 2011;15(9):928–35.PubMedCrossRefGoogle Scholar
  79. 79.
    Conte A, Barbanti P, Frasca V, Iacovelli E, Gabriele M, Giacomelli E, et al. Differences in short-term primary motor cortex synaptic potentiation as assessed by repetitive transcranial magnetic stimulation in migraine patients with and without aura. Pain. 2010;148(1):43–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Berardelli A, Inghilleri M, Rothwell JC, Romeo S, Currà A, Gilio F, et al. Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Exp Brain Res. 1998;122(1):79–84.PubMedCrossRefGoogle Scholar
  81. 81.
    Ziemann U, Paulus W, Nitsche MA, Pascual-Leone A, Byblow WD, Berardelli A, et al. Consensus: motor cortex plasticity protocols. Brain Stimul. 2008;1(3):164–82.PubMedCrossRefGoogle Scholar
  82. 82.
    Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci. 2004;5(2):97–107.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Cosentino G, Brighina F, Talamanca S, Paladino P, Vigneri S, Baschi R, Indovino S, Maccora S, Alfonsi E, Fierro B. Reduced threshold for inhibitory homeostatic responses in migraine motor cortex? A tDCS/TMS study. Headache. 2014b;54(4):663–74.PubMedCrossRefGoogle Scholar
  84. 84.
    Cosentino G, Fierro B, Vigneri S, Talamanca S, Paladino P, Baschi R, Indovino S, Maccora S, Valentino F, Fileccia E, Giglia G, Brighina F. Cyclical changes of cortical excitability and metaplasticity in migraine: evidence from a repetitive transcranial magnetic stimulation study. Pain. 2014c;155(6):1070–8.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bohotin V, Fumal A, Vandenheede M, Gérard P, Bohotin C, Maertens de Noordhout A, et al. Effects of repetitive transcranial magnetic stimulation on visual evoked potentials in migraine. Brain. 2002;125:912–22.CrossRefGoogle Scholar
  86. 86.
    Fumal A, Coppola G, Bohotin V, Gérardy PY, Seidel L, Donneau AF, et al. Induction of long-lasting changes of visual cortex excitability by five daily sessions of repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers and migraine patients. Cephalalgia. 2006;26:143–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Coppola G, De Pasqua V, Pierelli F, Schoenen J. Effects of repetitive transcranial magnetic stimulation on somatosensory evoked potentials and high frequency oscillations in migraine. Cephalalgia. 2012;32:700–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Palermo A, Giglia G, Vigneri S, Cosentino G, Fierro B, Brighina F. Does habituation depend on cortical inhibition? Results of an rTMS study in healthy subjects. Exp Brain Res. 2011;212(1):101–7.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Sándor PS, Dydak U, Schoenen J, Kollias SS, Hess K, Boesiger P, et al. MR spectroscopic imaging during visual stimulation in subgroups of migraine with aura. Cephalalgia. 2005;25:507–18.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Siniatchkin M, Sendacki M, Moeller F, Wolff S, Jansen O, Siebner H, et al. Abnormal changes of synaptic excitability in migraine with aura. Cereb Cortex. 2012;22:2207–16.PubMedCrossRefGoogle Scholar
  92. 92.
    Coppola G, Pierelli F, Schoenen J. Is the cerebral cortex hyperexcitable or hyperresponsive in migraine? Cephalalgia. 2007;27(12):1427–39.PubMedCrossRefGoogle Scholar
  93. 93.
    Afra J, Proietti Cecchini A, Sándor PS, Schoenen J. Comparison of visual and auditory evoked cortical potentials in migraine patients between attacks. Clin Neurophysiol. 2000;111:1124–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Cruccu G, Garcia-Larrea L, Hansson P, Keindl M, Lefaucheur JP, Paulus W, Taylor R, Tronnier V, Truini A, Attal N. EAN guidelines on central neurostimulation therapy in chronic pain conditions. Eur J Neurol. 2016;23(10):1489–99.PubMedCrossRefGoogle Scholar
  95. 95.
    Brighina F, Piazza A, Vitello G, Aloisio A, Palermo A, Daniele O, Fierro B. rTMS of the prefrontal cortex in the treatment of chronic migraine: a pilot study. J Neurol Sci. 2004;227(1):67–71.PubMedCrossRefGoogle Scholar
  96. 96.
    Clarke BM, Upton AR, Kamath MV, Al-Harbi T, Castellanos CM. Transcranial magnetic stimulation for migraine: clinical effects. J Headache Pain. 2006;7:341–6.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lipton RB, Dodick DW, Silberstein SD, et al. Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, double-blind, parallel-group, sham-controlled trial. Lancet Neurol. 2010;9:373–80.CrossRefGoogle Scholar
  98. 98.
    Misra UK, Kalita J, Bhoi SK. High-rate repetitive transcranial magnetic stimulation in migraine prophylaxis: a randomized, placebo-controlled study. J Neurol. 2013;260(11):2793–801.PubMedCrossRefGoogle Scholar
  99. 99.
    Shehata HS, Esmail EH, Abdelalim A, El-Jaafary S, Elmazny A, Sabbah A, Shalaby NM. Repetitive transcranial magnetic stimulation versus botulinum toxin injection in chronic migraine prophylaxis: a pilot randomized trial. J Pain Res. 2016;9:771–7.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lan L, Zhang X, Li X, Rong X, Peng Y. The efficacy of transcranial magnetic stimulation on migraine: a meta-analysis of randomized controlled trails. J Headache Pain. 2017;18(1):86.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Andreou AP, Holland PR, Akerman S, Summ O, Fredrick J, Goadsby PJ. Transcranial magnetic stimulation and potential cortical and trigeminothalamic mechanisms in migraine. Brain. 2016;139:2002–14.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Holland PR, Schembri CT, Fredrick JP, et al. Transcranial magnetic stimulation for the treatment of migraine aura. Proceedings of the 61st Annual Meeting of the Academy of Neurology, 25 April 2009, Seattle, WA.Google Scholar
  103. 103.
    Bhola R, Kinsella E, Giffin N, Lipscombe S, Ahmed F, Weatherall M, Goadsby PJ. Single-pulse transcranial magnetic stimulation (sTMS) for the acute treatment of migraine: evaluation of outcome data for the UK post market pilot program. J Headache Pain. 2015;16:535.PubMedCrossRefGoogle Scholar
  104. 104.
    Starling AJ, Tepper SJ, Marmura MJ, Shamim EA, Robbins MS, Hindiyeh N, Charles AC, Goadsby PJ, Lipton RB, Silberstein SD, Gelfand AA, Chiacchierini RP, Dodick DW. A multicenter, prospective, single arm, open label, observational study of sTMS for migraine prevention (ESPOUSE Study). Cephalalgia. 2018;98:1038–48.CrossRefGoogle Scholar
  105. 105.
    Chen PR, Lai KL, Fuh JL, Chen SP, Wang PN, Liao KK, Wang SJ. Efficacy of continuous theta burst stimulation of the primary motor cortex in reducing migraine frequency: a preliminary open-label study. J Chin Med Assoc. 2016;79(6):304–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Cosentino G, Brighina F, Brancato S, Valentino F, Indovino S, Fierro B. Transcranial magnetic stimulation reveals cortical hyperexcitability in episodic cluster headache. J Pain. 2015;16(1):53–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Hodaj H, Alibeu JP, Payen JF, Lefaucheur JP. Treatment of chronic facial pain including cluster headache by repetitive transcranial magnetic stimulation of the motor cortex with maintenance sessions: a Naturalistic Study. Brain Stimul. 2015;8(4):801–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Dipartimento di Biomedicina Neuroscienze e Diagnostiche avanzate (BIND)University of PalermoPalermoItaly
  2. 2.Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
  3. 3.Clinical Neurophysiology Unit, Mondino Foundation IRCCSPaviaItaly

Personalised recommendations