Skip to main content

Parallel Computation for Sparse Network Component Analysis

  • Conference paper
  • First Online:
The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019) (AMLTA 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 921))

Abstract

The Gene regulatory network analysis is one of the gene expression data analysis tasks. Gene regulatory network goal is determining the topological order of genes interactions. Moreover, the regulatory network is a vital for understanding genes influence on each other. However, the main challenge confronting gene regulatory network algorithms is the massive data size. Where, the algorithm runtime is relative to the data size. This paper presents a Parallel computation for Sparse Network Component Analysis (PSparseNCA) with application on gene regulatory network. PSparseNCA is a parallel version of SparseNCA. PSparseNCA enhanced the computation of SparseNCA using a distributed computing model. Where, the workload is distributed among P processing nodes, PSparseNCA is more efficient than SparseNCA. It achieved a better performance and its speedup reached 12.33. In addition, PsparseNCA complexity is O(NM2/P) instead of O(NM2) for SparseNCA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Velculescu, V.E., Zhang, L., Vogelstein, B., Kinzler, K.W.: Serial analysis of gene expression. Science 270(5235), 484–487 (1995)

    Google Scholar 

  2. Isea, R.: The present-day meaning of the word bioinformatics. Glob. J. Adv. Res. 2, 70–73 (2015)

    Google Scholar 

  3. Nair, A.: Computational biology & bioinformatics - a gentle overview. Commun. Comput. Soc. India 30(1), 7–12 (2007)

    Google Scholar 

  4. Cosmides, L., Tooby, J.: From Function to Structure: The Role of Evolutionary Biology and Computational Theories in Cognitive Neuroscience. The MIT Press (1995)

    Google Scholar 

  5. Durbin, R.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge university press (1998)

    Google Scholar 

  6. Kelley, L.A., MacCallum, R.M., Sternberg, M.J.: Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299(2), 501–522 (2000)

    Google Scholar 

  7. Ghaemmaghami, S., Huh, W.-K., Bower, K., Howson, R.W., Belle, A., Dephoure, N., O’Shea, E.K., Weissman, J.S.: Global analysis of protein expression in yeast. Nature 425(6959), 737–741 (2003)

    Google Scholar 

  8. Dominguez, C., Boelens, R., Bonvin, A.M.: HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125(7), 1731–1737 (2003)

    Google Scholar 

  9. Janssen, P.J., Jones, W.A., Jones, D.T., Woods, D.R.: Molecular analysis and regulation of the glnA gene of the gram-positive anaerobe Clostridium acetobutylicum. J. Bacteriol. 170(1), 400–408 (1988)

    Google Scholar 

  10. Berrozpe, G., Schaeffer, J., Peinado, M.A., Real, F.X., Perucho, M.: Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer. Int. J. Cancer 58(2), 185–191 (1994)

    Google Scholar 

  11. Shortle, D.: Prediction of protein structure. Curr. Biol. 10(2), 49–51 (2000)

    Google Scholar 

  12. Rubin, G.M., Yandell, M.D., Wortman, J.R., Gabor, G.L., Nelson, C.R., Hariharan, I.K., Fortini, M.E., Li, P.W., Apweiler, R., Fleischmann, W.: Comparative genomics of the eukaryotes. Science 287(5461), 2204–2215 (2000)

    Google Scholar 

  13. Dowsey, A.W.: High-throughput image analysis for proteomics, Citeseer (2005)

    Google Scholar 

  14. Haefner, J.W.: Modeling Biological Systems: Principles and Applications. Springer Science (2005)

    Google Scholar 

  15. Churchill, G.A.: Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 32(1), 490–495 (2002)

    Google Scholar 

  16. Culf, A., Cuperlovic-Culf, M., Ouellette, R.: Carbohydrate microarrays: survey of fabrication techniques. OMICS: J. Integr. Biol. 10(3), 289–310 (2006)

    Google Scholar 

  17. Gasch, A., Spellman, P., Kao, C., Carmel-Harel, O., Eisen, M., Storz, G., Botstein, D., Brown, P.: Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11(12), 4241–4257 (2000)

    Google Scholar 

  18. Schena, M., Shalon, D., Davis, R., Brown, P.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray, in Science, Washington (1995)

    Google Scholar 

  19. Yang, Y., Choi, J., Choi, K., Pierce, M., Gannon, D., Kim, S.: BioVLAB-microarray: microarray data analysis in virtual environment. In: IEEE Fourth International Conference on eScience (2008)

    Google Scholar 

  20. Aluru, S.: Handbook of Computational Molecular Biology. CRC Press (2006)

    Google Scholar 

  21. Jostins, L., Jaeger, J.: Reverse engineering a gene network using an asynchronous parallel evolution strategy. BMC Syst. Biol. 4(1), 17–33 (2010)

    Google Scholar 

  22. Klinger, B., Bluthgen, N.: Reverse engineering gene regulatory networks by modular response analysis-a benchmark. Essays Biochem. 62(4), 535–547 (2018)

    Google Scholar 

  23. Perkins, M., Daniels, K.: Visualizing dynamic gene interactions to reverse engineer gene regulatory networks using topological data analysis. In: 2017 21st International Conference on Information Visualisation (IV) (2017)

    Google Scholar 

  24. Liu, Z.-P.: Reverse engineering of genome-wide gene regulatory networks from gene expression data. Curr. Genomics 16(1), 3–22 (2015)

    Google Scholar 

  25. de Souza, M.C., Higa, C.H.A.: Reverse engineering of gene regulatory networks combining dynamic bayesian networks and prior biological knowledge. In: International Conference on Computational Science and Its Applications (2018)

    Google Scholar 

  26. Villaverde, A.F., Banga, J.R.: Reverse engineering and identification in systems biology: strategies, perspectives and challenges, vol. 11, no. 91 (2014)

    Google Scholar 

  27. Pirgazi, J., Khanteymoori, A.R.: A robust gene regulatory network inference method base on Kalman filter and linear regression. PLoS ONE 13(7), e0200094 (2018)

    Google Scholar 

  28. Lam, K.Y., Westrick, Z.M., Muller, C.L., Christiaen, L., Bonneau, R.: Fused regression for multi-source gene regulatory network inference. PLoS Comput. Biol. 12(12), e1005157 (2016)

    Google Scholar 

  29. Omranian, N., Eloundou-Mbebi, J.M.O., Mueller-Roeber, B., Nikoloski, Z.: Gene regulatory network inference using fused LASSO on multiple data sets. Scientific Reports 6, 20533 (2016)

    Google Scholar 

  30. Guerrier, S., Mili, N., Molinari, R., Orso, S., Avella-Medina, M., Ma, Y.: A predictive based regression algorithm for gene network selection. Front. Genet. 7, 97 (2016)

    Google Scholar 

  31. Gregoretti, F., Belcastro, V., Di Bernardo, D., Oliva, G.: A parallel implementation of the network identification by multiple regression (NIR) algorithm to reverse-engineer regulatory gene networks. PLoS ONE 5(4), e10179–e10183 (2010)

    Google Scholar 

  32. Sales, G., Romualdi, C.: Parmigene—a parallel R package for mutual information estimation and gene network reconstruction. Bioinformatics 27(13), 1876–1877 (2011)

    Google Scholar 

  33. Shi, H., Schmidt, B., Liu, W., Muller-Wittig, W.: Parallel mutual information estimation for inferring gene regulatory networks on GPUs. BMC Res. Notes 4(1), 189–194 (2011)

    Google Scholar 

  34. Zhang, X., Zhao, X.-M., He, K., Lu, L., Cao, Y., Liu, J., Hao, J.-K., Liu, Z.-P., Chen, L.: Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics 28(1), 98–104 (2011)

    Google Scholar 

  35. Meyer, P.E., Lafitte, F., Bontempi, G.: Minet: AR/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinform. 9(1), 461 (2008)

    Google Scholar 

  36. Lachmann, A., Giorgi, F.M., Lopez, G., Califano, A.: ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information. Bioinformatics 32(14), 2233–2235 (2016)

    Google Scholar 

  37. Barman, S., Kwon, Y.-K.: A novel mutual information-based Boolean network inference method from time-series gene expression data. PloS one 12(2) (2017)

    Google Scholar 

  38. Raychaudhuri, S., Stuart, J.M., Altman, R.B.: Principal components analysis to sum-marize microarray experiments: application to sporulation time series. In: Pacific Symposium on Biocomputing, NIH Public Access, pp. 455–466 (2000)

    Google Scholar 

  39. Holter, N.S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J.R., Fedoroff, N.V.: Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc. Nat. Acad. Sci. 97(15), 8409–8414 (2000)

    Google Scholar 

  40. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons (2001)

    Google Scholar 

  41. Aapo, H.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Google Scholar 

  42. Liebermeister, W.: Linear modes of gene expression determined by independent component analysis. Bioinformatics 18(1), 51–60 (2002)

    Google Scholar 

  43. Liao, J.C., Boscolo, R., Yang, Y.-L., Tran, L.M., Sabatti, C., Roychowdhury, V.P.: Network component analysis: reconstruction of regulatory signals in biological systems. In: Proceedings of the National Academy of Sciences (2003)

    Google Scholar 

  44. Chang, C., Ding, Z., Hung, Y.S., Fung, P.C.W.: Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data. Bioinformatics 24(11), 1349–1358 (2008)

    Google Scholar 

  45. Jayavelu, N.D., Aasgaard, L.S., Bar, N.: Iterative sub-network component analysis enables reconstruction of large scale genetic networks. BMC Bioinform. 16(1), 366 (2015)

    Google Scholar 

  46. Shi, Q., Zhang, C., Guo, W., Zeng, T., Lu, L., Jiang, Z., Wang, Z., Liu, J., Chen, L.: Local network component analysis for quantifying transcription factor activities. Methods 124, 25–35 (2017)

    Google Scholar 

  47. Noor, A., Ahmad, A., Serpedin, E., Nounou, M., Nounou, H.: ROBNCA: robust network component analysis for recovering transcription factor activities. Bioinformatics 29(19), 2410 (2013)

    Google Scholar 

  48. Noor, A., Ahmad, A., Serpedin, E.: SparseNCA: sparse network component analysis for recovering transcription factor activities with incomplete prior information. IEEE/ACM Trans. Comput. Biol. Bioinform. 15(2), 387–395 (2018)

    Google Scholar 

  49. Latchman, D.S.: Transcription factors: an overview. Int. J. Biochem. Cell Biol. 29(12), 1305–1312 (1997)

    Google Scholar 

  50. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Nat. Acad. Sci. 95(25), 14863–14868 (1998)

    Google Scholar 

  51. Zhu, X., Gerstein, M., Snyder, M.: Getting connected: analysis and principles of biological networks. Genes Develop. 21(9), 1010–1024 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Elsayad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elsayad, D., Hamad, S., Shedeed, H.A., Tolba, M.F. (2020). Parallel Computation for Sparse Network Component Analysis. In: Hassanien, A., Azar, A., Gaber, T., Bhatnagar, R., F. Tolba, M. (eds) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019). AMLTA 2019. Advances in Intelligent Systems and Computing, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-030-14118-9_90

Download citation

Publish with us

Policies and ethics