Advertisement

Parameter Estimation for Chaotic Systems Using the Fruit Fly Optimization Algorithm

  • Saad M. Darwish
  • Amr Elmasry
  • Asmaa H. IbrahimEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 921)

Abstract

A chaotic system is a one of encryption technique used in wireless communication. The chaotic system is a nonlinear dynamic system, which provides a mechanism for signal design and generation to cover the transmitting information and data. The chaotic system is high security, fast and difficult to predict because of its parameters sensitive to initial conditions. Parameter estimation of chaotic systems is a big challenge and an active area of study. This paper is concerned with the parameter estimation of a chaotic system can be formulated as a multidimensional optimization problem. Optimization algorithms can be solving this problem because of its good computational performance and robustness. Fruit Fly Optimization Algorithm (FOA) is used to estimate the parameters of chaotic systems which belong to an optimization algorithm. Simulation results which applied on the Lorenz system show that the FOA can identify the parameters of the chaotic systems more accurately, more rapidly, and more stable.

Keywords

Chaotic system Fruit fly optimization algorithm (FOA) Parameter estimation 

References

  1. 1.
    Bakhache, B., Ahmad, K., Assad, S.: A new chaotic encryption algorithm to enhance the security of Zigbee and wi-fi networks. Int. J. Intell. Comput. Res. 2(4), 219–227 (2011)Google Scholar
  2. 2.
    Banerjee, S., Kurths, J.: Chaos and cryptography: a new dimension in secure communications. Eur. Phys. J. Spec. Top. 223(8), 1441–1445 (2014)Google Scholar
  3. 3.
    Shukla, P., Khare, A., Rizvi, M., Stalin, S., Kumar, S.: Applied cryptography using chaos function for fast digital logic-based systems in ubiquitous computing. J. Entropy 17(3), 1387–1410 (2015)Google Scholar
  4. 4.
    Shaerbaf, S., Seyedin, S.: Nonlinear multiuser receiver for optimized chaos-based DSCDMA systems. Iran. J. Electr. Electron. Eng. 7(3), 149–160 (2011)Google Scholar
  5. 5.
    Stavrinides, S., Anagnostopoulos, A., Miliou, A., Valaristos, L., Kosmatopulos, K., Papaioannou, S.: Digital chaotic synchronized communication system. J. Eng. Sci. Technol. Rev. 2(1), 82–86 (2009)Google Scholar
  6. 6.
    Homer, M., Hogan, S., Bernardo, M., Williams, C.: The importance of choosing attractors for optimizing chaotic communications. IEEE Trans. Circuits Syst. 51(10), 511–516 (2004)Google Scholar
  7. 7.
    He, J., Cai, J.: Parameter modulation for secure communication via the synchronization of chen hyperchaotic systems. Syst. Sci. and Control Eng. 2(1), 718–726 (2014)Google Scholar
  8. 8.
    Wang, J., Zhou, B., Zhou, S.: An improved cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation. Comput. Intell. Neurosci. 2016(8), 1–8 (2016)Google Scholar
  9. 9.
    Chen, M., Kurths, J.: Chaos synchronization and parameter estimation from a scalar output signal. Phys. Rev. E 76(2), 1–4 (2007)Google Scholar
  10. 10.
    George, G., Raimond, K.: A survey on optimization algorithms for optimizing the numerical functions. Int. J. Comput. Appl. 61(6), 41–46 (2013)Google Scholar
  11. 11.
    Binitha, S., Sathya, S.: A survey of bio-inspired optimization algorithms. Int. J. Soft Comput. Eng. 2(2), 137–151 (2012)Google Scholar
  12. 12.
    Wahab, M., Meziani, S., Atyabi, A.: A comprehensive review of swarm optimization algorithms. PLoS ONE 10(5), 1–36 (2015)Google Scholar
  13. 13.
    Sehrawat, P., Rohil, H.: Taxonomy of swarm optimization. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(8), 1400–1406 (2013)Google Scholar
  14. 14.
    Pathania, K., Rana, A.: Fruit fly optimization solution for missile optimization attack drown problem. J. Comput. Technol. 1(2), 1–6 (2016)Google Scholar
  15. 15.
    Pan, W.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl.-Based Syst. 26(2), 69–74 (2012)Google Scholar
  16. 16.
    Li, X., Yin, M.: Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dyn. 77(1–2), 61–71 (2014)MathSciNetGoogle Scholar
  17. 17.
    Li, H., Bai, P., Xue, J., Zhu, J., Zhang, H.: Parameter estimation of chaotic systems using fireworks algorithm. Adv. Swarm Comput. Intell. 9141, 457–467 (2015)Google Scholar
  18. 18.
    Gao, W., Zhang, Z., Chong, Y.: Chaotic system parameter identification based on firefly optimization. Appl. Mech. Mater. 347–350, 3821–3826 (2013)Google Scholar
  19. 19.
    Xiang-Tao, L., Ming-Hao, Y.: Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method. Chin. Phys. B 21(5), 1–6 (2012)Google Scholar
  20. 20.
    He, Q., Wang, L., Liu, B.: Parameter estimation for chaotic systems by particle swarm optimization. Chaos Solitons Fractals 34(2), 654–661 (2007)zbMATHGoogle Scholar
  21. 21.
    Li, L., Yang, Y., Peng, H., Wang, X.: Parameters identification of chaotic systems via chaotic ant swarm. Chaos Solitons Fractals 28(5), 1204–1211 (2006)zbMATHGoogle Scholar
  22. 22.
    Hao, D., Rong, L., Ke, L.: Parameters identification of chaotic systems based on artificial bee colony algorithm combined with cuckoo search strategy. Sci. China Technol. Sci. 61(3), 417–426 (2018)Google Scholar
  23. 23.
    Niu, J., Zhong, W., Liang, Y., Luo, N., Qian, F.: Fruit fly optimization algorithm based on differential evolution and its application on gasification process operation optimization. Knowl.-Based Syst. 88, 253–263 (2015)Google Scholar
  24. 24.
    Iscan, H., Gunduz, M.: Parameter analysis on fruit fly optimization algorithm. J. Comput. Commun. 2(4), 137–141 (2014)Google Scholar
  25. 25.
    Jiang, T., Wang, J.: Study on path planning method for mobile robot based on fruit fly optimization algorithm. Appl. Mech. Mater. 536–537, 970–973 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Saad M. Darwish
    • 1
  • Amr Elmasry
    • 2
  • Asmaa H. Ibrahim
    • 1
    Email author
  1. 1.Department of Information Technology, Institute of Graduate Studies and ResearchAlexandria UniversityAlexandriaEgypt
  2. 2.Department of Computer Engineering and Systems, Faculty of EngineeringAlexandria UniversityAlexandriaEgypt

Personalised recommendations