Fractional-Order Control Scheme for Q-S Chaos Synchronization

  • Adel Ouannas
  • Giuseppe Grassi
  • Ahmad Taher AzarEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 921)


In this paper, a fast control scheme is presented for the problem of Q-S synchronization between fractional chaotic systems with different dimensions and orders. Using robust control law and Laplace transform, a synchronization approach is designed to achieve Q-S synchronization between n-D and m-D fractional-order chaotic systems in arbitrary dimension d. This paper provides further contribution to the topic of Q-S synchronization between fractional-order systems with different dimensions and introduces a general control scheme that can be applied to wide classes of fractional chaotic and hyperchaotic systems. Numerical example and simulations are used to show the effectiveness of the proposed approach.


Fractional chaos Q-S synchronization Different dimensions Laplace transform Fast control 


  1. 1.
    Azar, A.T., Vaidyanathan, S.: Advances in Chaos Theory and Intelligent Control, vol. 337. Springer, Berlin (2016)CrossRefGoogle Scholar
  2. 2.
    Azar, A.T., Vaidyanathan, S., Ouannas, A.: Fractional Order Control and Synchronization of Chaotic Systems, Studies in Computational Intelligence, vol. 688. Springer, Berlin (2017)CrossRefGoogle Scholar
  3. 3.
    Azar, A.T., Radwan, A.G., Vaidyanathan, S. (eds.): Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications. Elsevier, Amsterdam (2018)Google Scholar
  4. 4.
    Azar, A.T., Radwan, A.G., Vaidyanathan, S. (eds.): Mathematical Techniques of Fractional Order Systems. Elsevier, Amsterdam (2018)Google Scholar
  5. 5.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Roy. Astron. Soc. 13(5), 529–539 (1967)CrossRefGoogle Scholar
  6. 6.
    Chen, W.C.: Dynamics and control of a financial system with time-delayed feedbacks. Chaos Solitons Fractals 37(4), 1198–1207 (2008)CrossRefGoogle Scholar
  7. 7.
    Miller, K.S., Ross, B. (eds.): An Introduction to The Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)zbMATHGoogle Scholar
  8. 8.
    Ouannas, A., Al-sawalha, M.M., Ziar, T.: Fractional chaos synchronization schemes for different dimensional systems with non-identical fractional-orders via two scaling matrices. Optik 127(20), 8410–8418 (2016)CrossRefGoogle Scholar
  9. 9.
    Ouannas, A., Azar, A.T., Vaidyanathan, S.: A robust method for new fractional hybrid chaos synchronization. Math. Methods Appl. Sci. 40(5), 1804–1812 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ouannas, A., Odibat, Z., Shawagfeh, N.: A new Q-S synchronization results for discrete chaotic systems. Differential Equations and Dynamical Systems (2016).
  11. 11.
    Ouannas, A., Abdelmalek, S., Bendoukha, S.: Coexistence of some chaos synchronization types in fractional-order differential equations. Electron J. Diff. Eqn. 128, 1–15 (2017)zbMATHGoogle Scholar
  12. 12.
    Ouannas, A., Azar, A.T., Vaidyanathan, S.: On a simple approach for Q-S synchronization of chaotic dynamical systems in continuous-time. Int. J. Comput. Sci. Math. 8(1), 20–27 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ouannas, A., Grassi, G., Ziar, T., Odibat, Z.: On a function projective synchronization scheme for non-identical fractional-order chaotic (hyperchaotic) systems with different dimensions and orders. Optik 136, 513–523 (2017)CrossRefGoogle Scholar
  14. 14.
    Ouannas, A., Odibat, Z., Hayat, T.: Fractional analysis of co-existence of some types of chaos synchronization. Chaos Solitons Fractals 105, 215–223 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pham, V.T., Ouannas, A., Volos, C., Kapitaniak, T.: A simple fractional-order chaotic system without equilibrium and its synchronization. AEU - Int. J. Electron. Commun. 86, 69–76 (2018)CrossRefGoogle Scholar
  16. 16.
    Wang, X., Ouannas, A., Pham, V.T., Abdolmohammadi, H.R.: A fractional-order form of a system with stable equilibria and its synchronization. Adv. Differ. Eqn. 2018(1), 20 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yan, Z.: Q-S synchronization in 3D Hénon-like map and generalized Hénon map via a scalar controller. Phys. Lett. A 342(4), 309–317 (2005). Scholar
  18. 18.
    Yan, Z.: Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems-a symbolic-numeric computation approach. Chaos 15(2), 023902 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhou, P., Wei, L.J., Cheng, X.F.: A novel fractional-order hyperchaotic system and its synchronization. Chin. Phys. B 18(7), 2674 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Adel Ouannas
    • 1
  • Giuseppe Grassi
    • 2
  • Ahmad Taher Azar
    • 3
    • 4
    Email author
  1. 1.Department of MathematicsUniversity of Larbi TebessiTebessaAlgeria
  2. 2.Dipartimento Ingegneria InnovazioneUniversità del SalentoLecceItaly
  3. 3.Faculty of Computers and InformationBenha UniversityBanhaEgypt
  4. 4.School of Engineering and Applied SciencesNile UniversityGizaEgypt

Personalised recommendations