Advertisement

Deep Learning for Predictive Analytics in Healthcare

  • Anandhavalli MuniasamyEmail author
  • Sehrish Tabassam
  • Mohammad A. Hussain
  • Habeeba Sultana
  • Vasanthi Muniasamy
  • Roheet Bhatnagar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 921)

Abstract

Despite a recent wealth of data and information, the healthcare sector is lacking in actionable knowledge. The healthcare industry faces challenges in essential areas like electronic record management, data integration, and computer-aided diagnoses and disease predictions. It is necessary to reduce healthcare costs and the movement towards personalized healthcare. The rapidly expanding fields of deep learning and predictive analytics has started to play a pivotal role in the evolution of large volume of healthcare data practices and research. Deep learning offers a wide range of tools, techniques, and frameworks to address these challenges. Health data predictive analytics is emerging as a transformative tool that can enable more proactive and preventative treatment options. In a nutshell, this paper focus on the framework for deep learning data analysis to clinical decision making depicts the study on various deep learning techniques and tools in practice as well as the applications of deep learning in healthcare.

Keywords

Healthcare data Electronic medical records Deep learning (DL) Predictive analytics 

References

  1. 1.
    Agarwal, R., Dhar, V.: Big data, data science, and analytics: the opportunity and challenge for IS research. Inf. Syst. Res. 25(3), 443–448 (2014)CrossRefGoogle Scholar
  2. 2.
    Apache Singa: http://singa.apache.org/en/index.html. Accessed 15 Nov 2018
  3. 3.
    Bardhan, I., Oh, J., Zheng, Z., Kirksey, K.: Predictive analytics for readmission of patients with congestive heart failure. Inf. Systems. Res. 26(1), 19–39 (2014)CrossRefGoogle Scholar
  4. 4.
    Enlitic: https://www.enlitic.com/. Accessed 15 Nov 2018
  5. 5.
    Nithya, B.: Study on predictive analytics practices in health care system. IJETTCS 5, 98–102 (2016)Google Scholar
  6. 6.
    Caffe: http://caffe.berkeleyvision.org/. Accessed 15 Nov 2018
  7. 7.
    Cellscope: https://www.cellscope.com/. Accessed 15 Nov 2018
  8. 8.
    Hongming, C., Engkvist, O., Wang, Y., Olivecrona, M., Blaschke, T.: The rise of deep learning in drug discovery. Drug Discov. Today 23(6), 1241–1250 (2018)CrossRefGoogle Scholar
  9. 9.
    Chen, G., Tsoi, A., Xu, H., Zheng, W.J.: Predict effective drug combination by deep belief network and ontology fingerprints. J. Biomed. Inform. 85, 149–154 (2018)CrossRefGoogle Scholar
  10. 10.
    Chen, T.E., et al.: S1 and S2 heart sound recognition using deep neural networks. IEEE Trans. Biomed. Eng. 64(2), 372–380 (2017)CrossRefGoogle Scholar
  11. 11.
    Choi, E., Schuetz, A., Stewart, W.F., Sun, J.: Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. 24(2), 361–370 (2017)Google Scholar
  12. 12.
    ConvNet: https://github.com/sdemyanov/ConvNet. Accessed 15 Nov 2018
  13. 13.
    D’Agostino, R.B., Vasan, R.S., Pencina, M.J., Wolf, P.A., Cobain, M., Massaro, J.M., Kannel, W.B.: General cardiovascular risk profile for use in primary care: the framingham heart study. Circulation 117(6), 743–753 (2008)CrossRefGoogle Scholar
  14. 14.
    Deeplearning4j: https://deeplearning4j.org/. Accessed 15 Nov 2018
  15. 15.
    Deep learning in Oncology: https://www.techemergence.com/deep-learning-in-oncology/. Accessed 15 Nov 2018
  16. 16.
    Emami, H., Dong, M., Nejad-Davarani, S.P., Glide-Hurst, C.K.: Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Med. Phys. 45, 3627–3636 (2018)CrossRefGoogle Scholar
  17. 17.
    Gharehbaghi, A., Babic, A.: Structural risk evaluation of a deep neural network and a Markov model in extracting medical information from phonocardiography. Stud. Health Technol. Inform 251, 157–160 (2018)Google Scholar
  18. 18.
    Gibson, E., et al.: NiftyNet: a deep-learning platform for medical imaging. Comput. Methods Programs Biomed. 158, 113–122 (2018)CrossRefGoogle Scholar
  19. 19.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, 1st edn. The MIT Press, Cambridge (2016)zbMATHGoogle Scholar
  20. 20.
    Google DeepMind Health: https://deepmind.com/applied/deepmind-health/. Accessed 15 Nov 2018
  21. 21.
    H20.ai: https://www.h2o.ai/. Accessed 15 Nov 2018
  22. 22.
    Humayun, A.I., Ghaffarzadegan, S., Feng, Z., Hasan, T.: Learning front-end filter-bank parameters using convolutional neural networks for abnormal heart sound detection. In: Conference on Proceedings of IEEE Engineering in Medicine Biology Society (2018)Google Scholar
  23. 23.
    Howard, J.: The business impact of deep learning. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, p. 1135 (2013)Google Scholar
  24. 24.
    Seeliger, K., Güçlü, U., Ambrogioni, L., Güçlütürk, Y., van Gerven, M.A.J.: Generative adversarial networks for reconstructing natural images from brain activity. NeuroImage 181, 775–785 (2018)CrossRefGoogle Scholar
  25. 25.
    Khodabakhshi, M.B., Moradi, M.H.: The attractor recurrent neural network based on fuzzy functions: an effective model for the classification of lung abnormalities. Comput. Biol. Med. 1(84), 124–136 (2017)CrossRefGoogle Scholar
  26. 26.
    Liu, W., et al.: Real-time multilead convolutional neural network for myocardial infarction detection. IEEE J. Biomed. Health Inform. 22(5), 1434–1444 (2018)CrossRefGoogle Scholar
  27. 27.
    Lohr, S.: IBM is counting on its bet on Watson, and Paying Big Money for It: https://www.nytimes.com/2016/10/17/technology/ibm-is-counting-on-its-bet-on-watson-and-paying-big-money-for-it.html. Accessed 15 Nov 2018
  28. 28.
    Kothari, V., Stevens, R.J., Adler, A.I., Stratton, I.M., Manley, S.E., Neil, H.A., Holman, R.R.: UKPDS 60: risk of stroke in type 2 diabetes estimated by the uk prospective diabetes study risk engine. Stroke 33(7), 1776–1781 (2002)CrossRefGoogle Scholar
  29. 29.
    Lecun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE Inst. Electr. Electron. Eng. 86, 2278–2324 (1998)CrossRefGoogle Scholar
  30. 30.
    Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRefGoogle Scholar
  31. 31.
    Meyer, G., Adomavicius, G., Johnson, P.E., Elidrisi, M., Rush, W.A., Sperl-Hillen, J.M., O’Connor, P.J.: A machine learning approach to improving dynamic decision making. Inf. Syst. Res. 25(2), 239–263 (2014)CrossRefGoogle Scholar
  32. 32.
    Mirzaei, G., Adeli, A., Adeli, H.: Imaging and machine learning techniques for diagnosis of Alzheimer’s disease. Rev. Neurosci. 27(8), 857–870 (2018)Google Scholar
  33. 33.
    Moons, K.G., Royston, P., Vergouwe, Y., Grobbee, D.E., Altman, D.G.: Prognosis and prognostic research: what, why, and how? BMJ 338, 1317–1320 (2009)CrossRefGoogle Scholar
  34. 34.
    MXNet: http://mxnet.incubator.apache.org/. Accessed 15 Nov 2018
  35. 35.
    San, P.P., Ling, S.H., Nguyen, H.T.: Deep learning framework for detection of hypoglycemic episodes in children with type 1 diabetes. In: Conference on Proceedings of IEEE Engineering in Medicine Biology Society (2016)Google Scholar
  36. 36.
    Raghupathi, W., Raghupathi, V.: Big data analytics in healthcare: promise and potential. Health Inf. Sci. Syst. 2(1), 3 (2014)CrossRefGoogle Scholar
  37. 37.
    Smith, B.J., Mezhir, J.J.: An interactive Bayesian model for prediction of lymph node ratio and survival in pancreatic cancer patients. J. Am. Med. Inform. Assoc. 21(2), 203–211 (2016)Google Scholar
  38. 38.
    Stevens, R.J., Kothari, V., Adler, A.I., Stratton, I.M.: The UKPDS risk engine: a model for the risk of coronary heart disease in type II diabetes (UKPDS 56). Clin. Sci. 101(6), 671–679 (2001)CrossRefGoogle Scholar
  39. 39.
    Tabak, Y.P., Sun, X., Nunez, C.M., Johannes, R.S.: Using electronic health record data to develop inpatient mortality predictive model: acute laboratory risk of mortality score (ALaRMS). J. Am. Med. Inform. Assoc. 21(3), 455–463 (2014)CrossRefGoogle Scholar
  40. 40.
    Tammemägi, M.C., Katki, H.A., Hocking, W.G., Church, T.R., Caporaso, N., Kvale, P.A., Chaturvedi, A.K., Silvestri, G.A., Riley, T.L., Commins, J., Berg, C.D.: Selection criteria for lung-cancer screening. New Engl. J. Med. 368(8), 728–736 (2013)CrossRefGoogle Scholar
  41. 41.
    Tensorflow: https://www.tensorflow.org/. Accessed 15 Nov 2018
  42. 42.
    Toll, D.B., Janssen, K.J.M., Vergouwe, Y., Moons, K.G.M.: Validation, updating and impact of clinical prediction rules: a review. J. Clin. Epidemiol. 61(11), 1085–1094 (2008)CrossRefGoogle Scholar
  43. 43.
    Top Strategic Technology Trends for 2018: http://www.gartner.com/technology/research/top-10-technology-trends/. Accessed 15 Nov 2018
  44. 44.
    Yamashita, R., Nishio, M., Do, R.K.G., Togashi, K.: Convolutional neural networks: an overview and application in radiology. Insights Imaging 9, 611–629 (2018)CrossRefGoogle Scholar
  45. 45.
    Yue, T., Wang, H.: Deep Learning for Genomics: A Concise Overview (2018)Google Scholar
  46. 46.
    Lipton, Z.C., Kale, D.C., Elkan, C., Wetzel, R.: Learning to diagnose with LSTM recurrent neural networks. In: International Conference on Learning Representations (ICLR) (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anandhavalli Muniasamy
    • 1
    Email author
  • Sehrish Tabassam
    • 1
  • Mohammad A. Hussain
    • 1
  • Habeeba Sultana
    • 1
  • Vasanthi Muniasamy
    • 1
  • Roheet Bhatnagar
    • 2
  1. 1.College of Computer ScienceKing Khalid UniversityAbhaKingdom of Saudi Arabia
  2. 2.Department of Computer Science and EngineeringManipal University JaipurRajasthanIndia

Personalised recommendations