Poverty and Its Relation to Crime and the Environment: Applying Spatial Data Mining to Enhance Evidence-Based Policy

  • Christopher R. StephensEmail author
  • Oliver López-Corona
  • Ricardo David Ruíz
  • Walter Martínez Santana
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 921)


The Data Revolution provides an unprecedented opportunity for enhancing evidence-based decision making in the area of public policy. Machine learning techniques will play an increasingly important role in knowledge extraction in data bases associated with important social phenomena such as poverty, crime and environmental degradation. As much of the corresponding data is spatio-temporal it is important to develop spatial data mining methodologies to attack these problems. In this paper, we will use spatial data mining techniques to analyze the relation between poverty and crime and poverty and environmental integrity in two bespoke data sets. We will show that the role and relation of poverty is measurable but is highly complex and heterogeneous.


Spatial data mining Naive Bayes Poverty Complexity Crime Ecosystem integrity Niche 


  1. Cf, Objetivos de Desarrollo Sostenible. Transforming our world: the 2030 agenda for sustainable development (2015)Google Scholar
  2. Chen, H., et al.: Crime data mining: a general framework and some examples. Computer 37(4), 50–56 (2004). ISSN: 0018-9162CrossRefGoogle Scholar
  3. Estivill-Castro, V., Lee, I.: Data mining techniques for autonomous exploration of large volumes of geo-referenced crime data. In: Proceedings of the 6th International Conference on Geocomputation (2001)Google Scholar
  4. Foster, J.E.: A report on Mexican multidimensional poverty measurement (2007)Google Scholar
  5. INEGI. Instituto Nacional de Estadística y Geografía (2015).
  6. Keyvanpour, M.R., Javideh, M., Ebrahimi, M.R.: Detecting and investigating crime by means of data mining: a general crime matching framework. In: Procedia Computer Science 3.0. World Conference on Information Technology, pp. 872–880 (2011). ISSN: 1877-0509
  7. McCue, C.: Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis. Butterworth-Heinemann, Oxford (2014)Google Scholar
  8. Nath, S.V.: Crime pattern detection using data mining. In: 2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops, 2006. WI- Poverty, Crime and the Environment 11 IAT 2006 Workshops, pp. 41–44, December 2006.
  9. Sen, A.: Poverty: an ordinal approach to measurement. Econometrica 44(2), 219–231 (1976)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Christopher R. Stephens
    • 1
    • 2
    Email author
  • Oliver López-Corona
    • 1
    • 3
    • 4
  • Ricardo David Ruíz
    • 1
    • 6
  • Walter Martínez Santana
    • 1
    • 5
  1. 1.C3 - Centro de Ciencias de la Complejidady Universidad Nacional Autónoma de MéxicoMexico CityMéxico
  2. 2.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
  3. 3.Cátedras CONACyT, Comisionado en Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)Mexico CityMéxico
  4. 4.Red ambiente y Sostenibilidad, Instituto de Ecología A.C.XalapaMéxico
  5. 5.Instituto Tecnológico Autónomo de México (ITAM)Mexico CityMexico
  6. 6.TechMileageScottsdaleUSA

Personalised recommendations