Advertisement

Solving Large Maximum Clique Problems on a Quantum Annealer

  • Elijah PelofskeEmail author
  • Georg Hahn
  • Hristo Djidjev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11413)

Abstract

Commercial quantum annealers from D-Wave Systems can find high quality solutions of quadratic unconstrained binary optimization problems that can be embedded onto its hardware. However, even though such devices currently offer up to 2048 qubits, due to limitations on the connectivity of those qubits, the size of problems that can typically be solved is rather small (around 65 variables). This limitation poses a problem for using D-Wave machines to solve application-relevant problems, which can have thousands of variables. For the important Maximum Clique problem, this article investigates methods for decomposing larger problem instances into smaller ones, which can subsequently be solved on D-Wave. During the decomposition, we aim to prune as many generated subproblems that don’t contribute to the solution as possible, in order to reduce the computational complexity. The reduction methods presented in this article include upper and lower bound heuristics in conjunction with graph decomposition, vertex and edge extraction, and persistency analysis.

Keywords

Branch-and-bound Decomposition D-Wave Graph algorithms Maximum clique Optimization Quantum annealing 

Notes

Acknowledgments

Research presented in this article was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 20180267ER.

References

  1. 1.
    Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D.: Graph partitioning and graph clustering. In: 10th DIMACS Implementation Challenge Workshop, 13–14 February 2012. Contemporary Mathematics, vol. 588 (2013)Google Scholar
  2. 2.
    Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. Adv. Dat An Class 5(2) (2011)Google Scholar
  3. 3.
    Boros, E., Hammer, P.: Pseudo-Boolean optimization. Discret. Appl. Math. 123(1–3), 155–225 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Budinich, M.: Exact bounds on the order of the maximum clique of a graph. Discret. Appl. Math. 127(3), 535–543 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Carmo, R., Züge, A.: Branch and bound algorithms for the maximum clique problem under a unified framework. J. Braz. Comput. Soc. 18(2), 137–151 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chapuis, G., Djidjev, H., Hahn, G., Rizk, G.: Finding maximum cliques on the D-wave quantum annealer. In: Proceedings of the 2017 ACM International Conference on Computing Frontiers (CF 2017), pp. 1–8 (2017)Google Scholar
  7. 7.
    Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theor. Comput. Syst. 33(2), 125–150 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    D-Wave: Technical Description of the D-Wave Quantum Processing Unit, 09-1109A-A, 2016 (2016)Google Scholar
  9. 9.
  10. 10.
    Dabrowski, K., Lozin, V., Müller, H., Rautenbach, D.: Parameterized algorithms for the independent set problem in some hereditary graph classes. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS, vol. 6460, pp. 1–9. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19222-7_1CrossRefzbMATHGoogle Scholar
  11. 11.
    Djidjev, H., Hahn, G., Niklasson, A., Sardeshmukh, V.: Graph partitioning methods for fast parallel quantum molecular dynamics. In: SIAM Workshop on Combinatorial Scientific Computing CSC 2016 (2015)Google Scholar
  12. 12.
    Elphick, C., Wocjan, P.: Conjectured lower bound for the clique number of a graph. arXiv:1804.03752 (2018)
  13. 13.
    Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungarian Acad. Sci. 5, 17–61 (1960)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Giakoumakis, V., Vanherpe, J.: On extended P4-reducible and extended P4-sparse graphs. Theor. Comput. Sci. 180, 269–286 (1997)CrossRefGoogle Scholar
  15. 15.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988).  https://doi.org/10.1007/978-3-642-78240-4CrossRefzbMATHGoogle Scholar
  16. 16.
    Hagberg, A., Schult, D., Swart, P.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of SciPy 2008, pp. 11–15 (2008)Google Scholar
  17. 17.
    Knuth, D.E.: The sandwich theorem. Electron. J. Comb. 1(A1), 1–49 (1993)MathSciNetGoogle Scholar
  18. 18.
    Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory IT–25(1), 1–7 (1979)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2(5), 1–27 (2014)Google Scholar
  20. 20.
    Mandrà, S., Katzgraber, H.: A deceptive step towards quantum speedup detection. Quant. Sci. Technol. 3(04LT01), 1–12 (2018)Google Scholar
  21. 21.
    Minty, G.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory Ser. B 28(3), 284–304 (1980)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pardalos, P.M., Rodgers, G.P.: A branch and bound algorithm for the maximum clique problem. Comput. Oper. Res. 19(5), 363–375 (1992)CrossRefGoogle Scholar
  23. 23.
    Pattabiraman, B., Patwary, M., Gebremedhin, A., Liao, W.K., Choudhary, A.: Fast max-clique finder (2018). http://cucis.ece.northwestern.edu/ projects/MAXCLIQUE
  24. 24.
    Pattabiraman, B., Patwary, M., Gebremedhin, A., Liao, W.K., Choudhary, A.: Fast algorithms for the maximum clique problem on massive graphs with applications. Internet Math. 11, 421–448 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Rao, M.: Solving some NP-complete problems using split decomposition. Discret. Appl. Math. 156(14), 2768–2780 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Soto, M., Rossi, A., Sevaux, M.: Three new upper bounds on the chromatic number. Discret. Appl. Math. 159, 2281–89 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Stahlke, D.: Python code to compute the Lovasz, Schrijver, and Szegedy numbers for graphs (2013). https://gist.github.com/dstahlke/6895643
  28. 28.
    Tarjan, R.: Decomposition by clique separators. Discret. Math. 55(2), 221–232 (1985)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Lancaster UniversityLancasterUK

Personalised recommendations