Advertisement

An In Vivo Experimental Assessment of BTrans: An Agile Business Transformation Methodology

  • Adriano M. S. Lima
  • Methanias Colaço JúniorEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 800)

Abstract

The scenario of great competition among companies has awakened the constant need to optimize the way their internal processes are conducted. The continuous process improvement cannot be achieved in any way without strategic alignment, without digital transformation and without the analysis of the human resources responsible for carrying out the activities. The three dimensions of management mentioned above need to be synchronized for the perfect functioning of the organizational gears. This article presents a Business Transformation Methodology that integrates the business process management (BPM) with the strategic objectives, digital transformation and people management to improve the operational efficiency of the business. In addition, an in vivo experiment on the implementation of the methodology using agile project management in a food distributor company is also described.

The results of the experiment showed significant improvements in the goods receipt process at a food distributor company, reducing the total execution time of the process, reducing the number of errors and acquiring more control of the critical activities of the company.

Keywords

Industry 4.0 BPM People management Digital transformation and agile management 

References

  1. 1.
    Carreira, D.: Organização, sistemas e métodos. Editora Saraiva (2017)Google Scholar
  2. 2.
    Cardoso, R.R.: Auditoria como aporte para uma qualidade total. Facit Bus. Technol. J. 1(4), 47. http://revistas.faculdadefacit.edu.br/index.php/JNT/article/download/220/226 (2017).
  3. 3.
    Pereira, J.R., Regattieri, C.R.: Gestão por processos. Rev. Interface Tecnológica. 15(1), 409–421 (2018)Google Scholar
  4. 4.
    Razavian, M., Khosravi, R.: Modeling variability in business process models using UML. In: Fifth International Conference on Information Technology: New Generations, pp. 82–87 (2008)Google Scholar
  5. 5.
    De Albuquerque, A.M.M., Rocha, P.S.S.: Sincronismo Organizacional, Editora Saraiva (2017)Google Scholar
  6. 6.
    Feng, L., Zhang, X., Zhou, K.: Current problems in China’s manufacturing and countermeasures for industry 4.0. EURASIP J. Wirel. Commun. Netw. 2018(1), 90 (2018)CrossRefGoogle Scholar
  7. 7.
    Neubauer, M., Stary, C., Kannengiesser, U., Heininger, R., Totter, A., Bonaldi, D.: S-BPM’s industrial capabilities. In: S-BPM in the Production Industry, pp. 27–67. Springer, Cham (2017)CrossRefGoogle Scholar
  8. 8.
    de Souza, K.T.S.: Planejamento Estratégico: uma Análise Estratégica de uma IES Privada de Palhoça/SC, IX SEGet, Simpósio de Excelûncia em Gestũo e Tecnologia. https://www.aedb.br/seget/arquivos/artigos12/55716704.pdf (2012)
  9. 9.
    Ribeiro, A.L.: Gestão de pessoas. Editora Saraiva (2017)Google Scholar
  10. 10.
    Santana, A.F.L., Alves, C.F.: BPMG–Um Modelo Conceitual para Governança em BPM–Aplicação numa Organização Pública. ISys-Rev. Bras. Sist. Informação. 9(1), 139–167 (2016)Google Scholar
  11. 11.
    Luz, G.B.: Gestãodoprocessodevendas: um estudo de caso em uma empresa de tecnologia da informação, UNISINOS. http://www.repositorio.jesuita.org.br/handle/UNISINOS/6161 (2016)Google Scholar
  12. 12.
    Oliveira, J.S.: Análise da Gestão empregada em Universidade Pública sob a perspectiva da Gestão de Processos e seus indicadores, UFRJ. https://pantheon.ufrj.br/handle/11422/345 (2014)
  13. 13.
    Severino, A.J.: Metodologia do trabalho científico. Cortez Editora (2017)Google Scholar
  14. 14.
    de Oliveira, R.A.N., Junior, M.C.: Experimental analysis of stemming on jurisprudential documents retrieval. Information. 9(2), 28 (2018)CrossRefGoogle Scholar
  15. 15.
    Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in Software Engineering. Springer Science & Business Media (2012)Google Scholar
  16. 16.
    Basili, V.R., Weiss, D.M.: A methodology for collecting valid software engineering data. IEEE Trans. Softw. Eng. SE-10(6), 728–738 (1984)CrossRefGoogle Scholar
  17. 17.
    Naik, N., Jenkins, P., Savage, N., Katos, V.: Big data security analysis approach using computational intelligence techniques in R for desktop users. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Adriano M. S. Lima
    • 1
  • Methanias Colaço Júnior
    • 2
    Email author
  1. 1.Department of Computer Science (DCOMP)Federal University of Sergipe (UFS)AracajuBrazil
  2. 2.Federal University of Sergipe (UFS)AracajuBrazil

Personalised recommendations