Advertisement

Aortic Valve Congenital Abnormalities and Stenosis

  • Rebecca T. HahnEmail author
  • Alex S. Felix
Chapter

Abstract

The spectrum of congenital anomalies of the aortic valve, which typically result in significant outflow obstruction, include subaortic stenosis, aortic valve anomalies (most commonly a bicuspid aortic valve) and supravalvular aortic stenosis. Although the latter is typically seen in the pediatric population, both congenital subaortic and aortic valvular abnormalities will commonly be seen in adults. This chapter will review the congenital anomalies leading to left ventricular outflow obstruction at the level of outflow tract and aortic root.

Keywords

Aortic stenosis Subaortic stenosis Bicuspid aortic valve Supravalvular stenosis 

Supplementary material

Video 13.1a

(Left) Transthoracic two-dimensional apical 5-chamber view with and without color in a patient with subaortic membrane (AVI 17281 kb)

Video 13.1b

(Right) Volume rendering of the subaortic membrane visualized from the ventricular perspective (AVI 15236 kb)

Video 13.2a

Transesophageal en-face view of unicuspid aortic vale from the aortic perspective (AVI 5646 kb)

Video 13.2b

Transthoracic en-face view of a pure bicuspid aortic valve (AVI 4362 kb)

Video 13.2c

Transthoracic en-face view of a bicuspid aortic vale with a calcified rafe between the left and the non-coronary cusps (AVI 13241 kb)

Video 13.2d

Transesophageal en-face view of a quadricuspid aortic valve (AVI 1596 kb)

Video 13.3

Volume rendered image of a bicuspid valve with rafe (white arrow) between the right and left coronary cusps. The 3DE data set has been acquired from transesophageal approach and the valve is seen en face from the aorta perspective (AVI 15202 kb)

Video 13.4a

Volume rendered 3DE cut plane of the aortic root showing the left main ostia and the interleaflet triangle between the left and non-coronary cusps obtained from the transesophageal approach (AVI 19927 kb)

Video 13.4b

Volume rendered 3DE cut plane of the aortic root showing the right coronary ostia and the rafe between the left and the right coronary cusps obtained from the transesophageal approach (AVI 19927 kb)

Video 13.5a

M Transthoracic, volume rendered en-face view of the subaortic membrane to allow the planimetry of the residual anatomical orifice area (AVI 1438 kb)

Video 13.5b

A Transthoracic, volume rendered en-face view of the aortic valve in a patient with congenital subaortic stenosis to allow the planimetry of the residual anatomical orifice area (AVI 897 kb)

References

  1. 1.
    Aboulhosn J, Child JS. Left ventricular outflow obstruction: subaortic stenosis, bicuspid aortic valve, supravalvar aortic stenosis, and coarctation of the aorta. Circulation. 2006;114(22):2412–22.CrossRefGoogle Scholar
  2. 2.
    Gray JC 3rd, Krazinski AW, Schoepf UJ, Meinel FG, Pietris NP, Suranyi P, Hlavacek AM. Cardiovascular manifestations of Williams syndrome: imaging findings. J Cardiovasc Comput Tomogr. 2013;7(6):400–7.CrossRefGoogle Scholar
  3. 3.
    Newfeld EA, Muster AJ, Paul MH, Idriss FS, Riker WL. Discrete subvalvular aortic stenosis in childhood. Study of 51 patients. Am J Cardiol. 1976;38(1):53–61.CrossRefGoogle Scholar
  4. 4.
    Oliver JM, Gonzalez A, Gallego P, Sanchez-Recalde A, Benito F, Mesa JM. Discrete subaortic stenosis in adults: increased prevalence and slow rate of progression of the obstruction and aortic regurgitation. J Am Coll Cardiol Sep. 2001;38(3):835–42.CrossRefGoogle Scholar
  5. 5.
    Brauner R, Laks H, Drinkwater DC Jr, Shvarts O, Eghbali K, Galindo A. Benefits of early surgical repair in fixed subaortic stenosis. J Am Coll Cardiol. 1997;30(7):1835–42.CrossRefGoogle Scholar
  6. 6.
    Cilliers AM, Gewillig M. Rheology of discrete subaortic stenosis. Heart. 2002;88(4):335–6.CrossRefGoogle Scholar
  7. 7.
    Maron BJ, Redwood DR, Roberts WC, Henry WL, Morrow AG, Epstein SE. Tunnel subaortic stenosis: left ventricular outflow tract obstruction produced by fibromuscular tubular narrowing. Circulation. 1976;54(3):404–16.CrossRefGoogle Scholar
  8. 8.
    Choi JY, Sullivan ID. Fixed subaortic stenosis: anatomical spectrum and nature of progression. Br Heart J. 1991;65(5):280–6.CrossRefGoogle Scholar
  9. 9.
    Cape EG, Vanauker MD, Sigfusson G, Tacy TA, del Nido PJ. Potential role of mechanical stress in the etiology of pediatric heart disease: septal shear stress in subaortic stenosis. J Am Coll Cardiol. 1997;30(1):247–54.CrossRefGoogle Scholar
  10. 10.
    Rosenquist GC, Clark EB, McAllister HA, Bharati S, Edwards JE. Increased mitral-aortic separation in discrete subaortic stenosis. Circulation. 1979;60(1):70–4.CrossRefGoogle Scholar
  11. 11.
    Barboza LA, Garcia Fde M, Barnoya J, Leon-Wyss JR, Castaneda AR. Subaortic membrane and aorto-septal angle: an echocardiographic assessment and surgical outcome. World J Pediatr Congenit Heart Surg. 2013;4(3):253–61.CrossRefGoogle Scholar
  12. 12.
    Gersony WM. Natural history of discrete subvalvar aortic stenosis: management implications. J Am Coll Cardiol. 2001;38(3):843–5.CrossRefGoogle Scholar
  13. 13.
    Leichter DA, Sullivan I, Gersony WM. “Acquired” discrete subvalvular aortic stenosis: natural history and hemodynamics. J Am Coll Cardiol. 1989;14(6):1539–44.CrossRefGoogle Scholar
  14. 14.
    Laksman ZW, Silversides CK, Sedlak T, Samman AM, Williams WG, Webb GD, Liu PP. Valvular aortic stenosis as a major sequelae in patients with pre-existing subaortic stenosis changing spectrum of outcomes. J Am Coll Cardiol. 2011;58(9):962–5.CrossRefGoogle Scholar
  15. 15.
    Sung CS, Price EC, Cooley DA. Discrete subaortic stenosis in adults. Am J Cardiol. 1978;42(2):283–90.CrossRefGoogle Scholar
  16. 16.
    Wright GB, Keane JF, Nadas AS, Bernhard WF, Castaneda AR. Fixed subaortic stenosis in the young: medical and surgical course in 83 patients. Am J Cardiol. 1983;52(7):830–5.CrossRefGoogle Scholar
  17. 17.
    McMahon CJ, Gauvreau K, Edwards JC, Geva T. Risk factors for aortic valve dysfunction in children with discrete subvalvar aortic stenosis. Am J Cardiol. 2004;94(4):459–64.CrossRefGoogle Scholar
  18. 18.
    Fedak PW, Verma S, David TE, Leask RL, Weisel RD, Butany J. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation. 2002;106(8):900–4.CrossRefGoogle Scholar
  19. 19.
    Tutar E, Ekici F, Atalay S, Nacar N. The prevalence of bicuspid aortic valve in newborns by echocardiographic screening. Am Heart J. 2005;150(3):513–5.CrossRefGoogle Scholar
  20. 20.
    Schaefer BM, Lewin MB, Stout KK, Gill E, Prueitt A, Byers PH, Otto CM. The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart. 2008;94(12):1634–8.CrossRefGoogle Scholar
  21. 21.
    Buchner S, Hülsmann M, Poschenrieder F, Hamer OW, Fellner C, Kobuch R, et al. Variable phenotypes of bicuspid aortic valve disease: classification by cardiovascular magnetic resonance. Heart. 2010;96(15):1233–40.CrossRefGoogle Scholar
  22. 22.
    Sievers HH, Schmidtke C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg. 2007;133(5):1226–33.CrossRefGoogle Scholar
  23. 23.
    Kang JW, Song HG, Yang DH, Baek S, Kim DH, Song JM, et al. Association between bicuspid aortic valve phenotype and patterns of valvular dysfunction and bicuspid aortopathy: comprehensive evaluation using MDCT and echocardiography. JACC Cardiovasc Imaging. 2013;6(2):150–61.CrossRefGoogle Scholar
  24. 24.
    Fernández B, Durán AC, Fernández-Gallego T, Fernández MC, Such M, Arqué JM, Sans-Coma V. Bicuspid aortic valves with different spatial orientations of the leaflets are distinct etiological entities. J Am Coll Cardiol. 2009;54(24):2312–8.CrossRefGoogle Scholar
  25. 25.
    Tzemos N, Therrien J, Yip J, Thanassoulis G, Tremblay S, Jamorski MT, et al. Outcomes in adults with bicuspid aortic valves. JAMA. 2008;300(11):1317–25.CrossRefGoogle Scholar
  26. 26.
    Michelena HI, Prakash SK, Della Corte A, Bissell MM, Anavekar N, Mathieu P, BAVCon Investigators, et al. Bicuspid aortic valve: identifying knowledge gaps and rising to the challenge from the International Bicuspid Aortic Valve Consortium (BAVCon). Circulation. 2014;129(25):2691–704.CrossRefGoogle Scholar
  27. 27.
    Hahn RT, Roman MJ, Mogtader AH, Devereux RB. Association of aortic dilation with regurgitant, stenotic and functionally normal bicuspid aortic valves. J Am Coll Cardiol. 1992;19(2):283–8.CrossRefGoogle Scholar
  28. 28.
    Keane MG, Wiegers SE, Plappert T, Pochettino A, Bavaria JE, Sutton MG. Bicuspid aortic valves are associated with aortic dilatation out of proportion to coexistent valvular lesions. Circulation Nov. 2000;102(19 Suppl 3):III35–9.Google Scholar
  29. 29.
    Beroukhim RS, Kruzick TL, Taylor AL, Gao D, Yetman AT. Progression of aortic dilation in children with a functionally normal bicuspid aortic valve. Am J Cardiol. 2006;98(6):828–30.CrossRefGoogle Scholar
  30. 30.
    Bissell MM, Hess AT, Biasiolli L, Glaze SJ, Loudon M, Pitcher A, et al. Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circ Cardiovasc Imaging. 2013;6(4):499–507.CrossRefGoogle Scholar
  31. 31.
    Hope MD, Hope TA, Crook SE, Ordovas KG, Urbania TH, Alley MT, Higgins CB. 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging. 2011;4(7):781–7.CrossRefGoogle Scholar
  32. 32.
    Meierhofer C, Schneider EP, Lyko C, Hutter A, Martinoff S, Markl M, et al. Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. Eur Heart J Cardiovasc Imaging. 2013;14(8):797–804.CrossRefGoogle Scholar
  33. 33.
    Mahadevia R, Barker AJ, Schnell S, Entezari P, Kansal P, Fedak PW, et al. Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation. 2014;129(6):673–82.CrossRefGoogle Scholar
  34. 34.
    Michelena HI, Desjardins VA, Avierinos JF, Russo A, Nkomo VT, Sundt TM, et al. Natural history of asymptomatic patients with normally functioning or minimally dysfunctional bicuspid aortic valve in the community. Circulation. 2008;117(21):2776–84.CrossRefGoogle Scholar
  35. 35.
    Michelena HI, Khanna AD, Mahoney D, Margaryan E, Topilsky Y, Suri RM, et al. Incidence of aortic complications in patients with bicuspid aortic valves. JAMA. 2011;306(10):1104–12.CrossRefGoogle Scholar
  36. 36.
    Roberts WC, Ko JM. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation. 2005;111(7):920–5.CrossRefGoogle Scholar
  37. 37.
    Roberts WC, Janning KG, Ko JM, Filardo G, Matter GJ. Frequency of congenitally bicuspid aortic valves in patients >/=80 years of age undergoing aortic valve replacement for aortic stenosis (with or without aortic regurgitation) and implications for transcatheter aortic valve implantation. Am J Cardiol. 2012;109(11):1632–6.CrossRefGoogle Scholar
  38. 38.
    Hayashida K, Bouvier E, Lefèvre T, Chevalier B, Hovasse T, Romano M, et al. Transcatheter aortic valve implantation for patients with severe bicuspid aortic valve stenosis. Circ Cardiovasc Interv. 2013;6(3):284–91.CrossRefGoogle Scholar
  39. 39.
    Kochman J, Huczek Z, Scisło P, Dabrowski M, Chmielak Z, Szymański P, et al. Comparison of one- and 12-month outcomes of transcatheter aortic valve replacement in patients with severely stenotic bicuspid versus tricuspid aortic valves (results from a multicenter registry). Am J Cardiol. 2014;114(5):757–62.CrossRefGoogle Scholar
  40. 40.
    Ocak I, Lacomis JM, Deible CR, Pealer K, Parag Y, Knollmann F. The aortic root: comparison of measurements from ECG-gated CT angiography with transthoracic echocardiography. J Thorac Imaging. 2009;24(3):223–6.CrossRefGoogle Scholar
  41. 41.
    Brandenburg RO Jr, Tajik AJ, Edwards WD, Reeder GS, Shub C, Seward JB. Accuracy of 2-dimensional echocardiographic diagnosis of congenitally bicuspid aortic valve: echocardiographic-anatomic correlation in 115 patients. Am J Cardiol. 1983;51(9):1469–73.CrossRefGoogle Scholar
  42. 42.
    Malagoli A, Barbieri A, Modena MG. Bicuspid aortic valve regurgitation: quantification of anatomic regurgitant orifice area by 3D transesophageal echocardiography reconstruction. Echocardiography. 2008;25(7):797–8.CrossRefGoogle Scholar
  43. 43.
    Koh TW. Diagnosis of bicuspid aortic valve: role of three-dimensional transesophageal echocardiography and multiplane review analysis. Echocardiography. 2013;30(3):360–3.CrossRefGoogle Scholar
  44. 44.
    Unsworth B, Malik I, Mikhail GW. Recognising bicuspid aortic stenosis in patients referred for transcatheter aortic valve implantation: routine screening with three-dimensional transoesophageal echocardiography. Heart. 2010;96(8):645.CrossRefGoogle Scholar
  45. 45.
    Shibayama K, Harada K, Berdejo J, Tanaka J, Mihara H, Itabashi Y, Shiota T. Comparison of aortic root geometry with bicuspid versus tricuspid aortic valve: real-time three-dimensional transesophageal echocardiographic study. J Am Soc Echocardiogr. 2014;27(11):1143–52.CrossRefGoogle Scholar
  46. 46.
    Blot-Souletie N, Hebrard A, Acar P, Carrie D, Puel J. Comparison of accuracy of aortic valve area assessment in aortic stenosis by real time three-dimensional echocardiography in biplane mode versus two-dimensional transthoracic and transesophageal echocardiography. Echocardiography. 2007;24(10):1065–72.CrossRefGoogle Scholar
  47. 47.
    Nakai H, Takeuchi M, Yoshitani H, Kaku K, Haruki N, Otsuji Y. Pitfalls of anatomical aortic valve area measurements using two-dimensional transoesophageal echocardiography and the potential of three-dimensional transoesophageal echocardiography. Eur J Echocardiogr. 2010;11(4):369–76.CrossRefGoogle Scholar
  48. 48.
    Goland S, Trento A, Iida K, Czer LS, De Robertis M, Naqvi TZ, et al. Assessment of aortic stenosis by three-dimensional echocardiography: an accurate and novel approach. Heart. 2007;93(7):801–7.CrossRefGoogle Scholar
  49. 49.
    Machida T, Izumo M, Suzuki K, Yoneyama K, Kamijima R, Mizukoshi K, et al. Value of anatomical aortic valve area using real-time three-dimensional transoesophageal echocardiography in patients with aortic stenosis: a comparison between tricuspid and bicuspid aortic valves. Eur Heart J Cardiovasc Imaging. 2015;16(10):1120–8.CrossRefGoogle Scholar
  50. 50.
    Dall’Agata A, Cromme-Dijkhuis AH, Meijboom FJ, Spitaels SE, McGhie JS, Roelandt JR, Bogers AJ. Use of three-dimensional echocardiography for analysis of outflow obstruction in congenital heart disease. Am J Cardiol. 1999;83(6):921–5.CrossRefGoogle Scholar
  51. 51.
    Das KM, Momenah TS, Larsson SG, Jadoon S, Aldosary AS, Lee EY. Williams-Beuren syndrome: computed tomography imaging review. Pediatr Cardiol. 2014;35(8):1309–20.CrossRefGoogle Scholar
  52. 52.
    Eroglu AG, Babaoglu K, Oztunc F, Saltik L, Demir T, Ahunbay G, et al. Echocardiographic follow-up of children with supravalvular aortic stenosis. Pediatr Cardiol. 2006;27(6):707–12.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Cardiology/Structural Heart and Valve CenterColumbia University Medical CenterNew YorkUSA
  2. 2.Department of EchocardiographyNational Institute of CardiologyRio de JaneiroBrazil

Personalised recommendations