Advertisement

Functional Mitral Regurgitation

  • Timothy C. Tan
  • Xin Zeng
  • Judy HungEmail author
Chapter

Abstract

Mitral valve regurgitation is one of the most common valve lesions. Clinical decision making for mitral regurgitation depends on accurate assessment of the mechanism and quantitation of mitral regurgitation. The mechanism of mitral regurgitation in a significant proportion of patients especially in the developed countries is functional. The mechanism underlying functional mitral regurgitation is due to left ventricular dilation. Furthermore, as functional mitral regurgitation is by nature a dynamic problem, accurate assessment of severity can be challenging. Echocardiography which enables real time imaging of the heart is the primary imaging modality in the diagnosis and assessment of functional mitral regurgitation. Important information can be obtained from a systematic echocardiographic assessment of the whole mitral apparatus and the underlying ventricular myocardium. Due to the complex spatial and dynamic pattern of flow across the mitral valve in patients with functional mitral regurgitation, obtaining accurate flow quantification using standard two-dimensional measures can be challenging. Three-dimensional echocardiographic techniques have been successful in overcoming some of the inherent geometric limitations of two-dimensional imaging. This chapter outlines the key aspects of functional mitral regurgitation and includes an overview of the anatomy of the mitral valve in the context of functional mitral regurgitation and standard flow measures as assessed using two- and three dimensional echocardiography.

Keywords

Mitral regurgitation Functional Ischemic Echocardiography Severity Three-dimensional echocardiography 

Supplementary material

Video 10.1

Biplane image of a dilated left ventricle showing the tethering of the mitral leaflets resulting in incomplete coaptation (AVI 15947 kb)

Video 10.2a

(Left) Transesophageal 3DE image of the mitral valve viewed from left atrium in a patient with functional mitral regurgitation. There is a visible gap along the coaptation line due to tethered mitral leaflets (AVI 4084 kb)

Video 10.2b

(Right) Corresponding 3DE color Doppler image of the mitral valve seen from the left ventricular perspective showing origin of functional mitral regurgitation jet is through this gap (AVI 12099 kb)

Video 10.3

Transesophageal 3DE color acquisition. Multislice display of the proximal part of the jet to identify the vena contracta area (AVI 18542 kb)

Video 10.4

3DE measurement of regurgitant orifice area and volume in a patient with functional mitral regurgitation using transthoracic 3DE color Doppler and EsiePISA software package (Simenes Healthineer, Mountainview, CA, USA). The continuous change in the shape and volume of the proximal isovelocity surface (in green) and of the numbers show the dynamic nature the degree of regurgitation throughout the cardiac systole (AVI 6858 kb)

References

  1. 1.
    Lancellotti P, Moura L, Pierard LA, Agricola E, Popescu BA, Tribouilloy C, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr. 2010;11:307–32.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368:1005–11.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Bursi F, Enriquez-Sarano M, Nkomo VT, Jacobsen SJ, Weston SA, Meverden RA, et al. Heart failure and death after myocardial infarction in the community: the emerging role of mitral regurgitation. Circulation. 2005;111:295–301.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Grigioni F, Detaint D, Avierinos JF, Scott C, Tajik J, Enriquez-Sarano M. Contribution of ischemic mitral regurgitation to congestive heart failure after myocardial infarction. J Am Coll Cardiol. 2005;45:260–7.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Grigioni F, Enriquez-Sarano M, Zehr KJ, Bailey KR, Tajik AJ. Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation. 2001;103:1759–64.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Iung B, Baron G, Butchart EG, Delahaye F, Gohlke-Barwolf C, Levang OW, et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J. 2003;24:1231–43.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, Detaint D, Capps M, Nkomo V, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med. 2005;352:875–83.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Rosenhek R, Rader F, Klaar U, Gabriel H, Krejc M, Kalbeck D, et al. Outcome of watchful waiting in asymptomatic severe mitral regurgitation. Circulation. 2006;113:2238–44.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Patel JB, Borgeson DD, Barnes ME, Rihal CS, Daly RC, Redfield MM. Mitral regurgitation in patients with advanced systolic heart failure. J Card Fail. 2004;10:285–91.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Blondheim DS, Jacobs LE, Kotler MN, Costacurta GA, Parry WR. Dilated cardiomyopathy with mitral regurgitation: decreased survival despite a low frequency of left ventricular thrombus. Am Heart J. 1991;122:763–71.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Levine RA, Hagege AA, Judge DP, Padala M, Dal-Bianco JP, Aikawa E, et al. Mitral valve disease--morphology and mechanisms. Nat Rev Cardiol. 2015;12:689–710.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kanzaki H, Bazaz R, Schwartzman D, Dohi K, Sade LE, Gorcsan J 3rd. A mechanism for immediate reduction in mitral regurgitation after cardiac resynchronization therapy: insights from mechanical activation strain mapping. J Am Coll Cardiol. 2004;44:1619–25.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Dal-Bianco JP, Levine RA. Anatomy of the mitral valve apparatus: role of 2D and 3D echocardiography. Cardiol Clin. 2013;31:151–64.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    McCarthy KP, Ring L, Rana BS. Anatomy of the mitral valve: understanding the mitral valve complex in mitral regurgitation. Eur J Echocardiogr. 2010;11:i3–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hamdan A, Guetta V, Konen E, Goitein O, Segev A, Raanani E, et al. Deformation dynamics and mechanical properties of the aortic annulus by 4-dimensional computed tomography: insights into the functional anatomy of the aortic valve complex and implications for transcatheter aortic valve therapy. J Am Coll Cardiol. 2012;59:119–27.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Lansac E, Lim KH, Shomura Y, Goetz WA, Lim HS, Rice NT, et al. Dynamic balance of the aortomitral junction. J Thorac Cardiovasc Surg. 2002;123:911–8.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Veronesi F, Corsi C, Sugeng L, Caiani EG, Weinert L, Mor-Avi V, et al. Quantification of mitral apparatus dynamics in functional and ischemic mitral regurgitation using real-time 3-dimensional echocardiography. J Am Soc Echocardiogr. 2008;21:347–54.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Jensen MO, Hagege AA, Otsuji Y, Levine RA, Leducq Transatlantic MN. The unsaddled annulus: biomechanical culprit in mitral valve prolapse? Circulation. 2013;127:766–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Jensen MO, Jensen H, Levine RA, Yoganathan AP, Andersen NT, Nygaard H, et al. Saddle-shaped mitral valve annuloplasty rings improve leaflet coaptation geometry. J Thorac Cardiovasc Surg. 2011;142:697–703.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jensen MO, Jensen H, Smerup M, Levine RA, Yoganathan AP, Nygaard H, et al. Saddle-shaped mitral valve annuloplasty rings experience lower forces compared with flat rings. Circulation. 2008;118:S250–5.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Jimenez JH, Liou SW, Padala M, He Z, Sacks M, Gorman RC, et al. A saddle-shaped annulus reduces systolic strain on the central region of the mitral valve anterior leaflet. J Thorac Cardiovasc Surg. 2007;134:1562–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kunzelman KS, Reimink MS, Cochran RP. Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Cardiovasc Surg. 1997;5:427–34.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Padala M, Hutchison RA, Croft LR, Jimenez JH, Gorman RC, Gorman JH 3rd, et al. Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann Thorac Surg. 2009;88:1499–504.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Reimink MS, Kunzelman KS, Verrier ED, Cochran RP. The effect of anterior chordal replacement on mitral valve function and stresses. A finite element study. ASAIO J. 1995;41:M754–62.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Salgo IS, Gorman JH 3rd, Gorman RC, Jackson BM, Bowen FW, Plappert T, et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation. 2002;106:711–7.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Alkadhi H, Desbiolles L, Stolzmann P, Leschka S, Scheffel H, Plass A, et al. Mitral annular shape, size, and motion in normals and in patients with cardiomyopathy: evaluation with computed tomography. Invest Radiol. 2009;44:218–25.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Chaput M, Handschumacher MD, Tournoux F, Hua L, Guerrero JL, Vlahakes GJ, et al. Mitral leaflet adaptation to ventricular remodeling: occurrence and adequacy in patients with functional mitral regurgitation. Circulation. 2008;118:845–52.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Flachskampf FA, Chandra S, Gaddipatti A, Levine RA, Weyman AE, Ameling W, et al. Analysis of shape and motion of the mitral annulus in subjects with and without cardiomyopathy by echocardiographic 3-dimensional reconstruction. J Am Soc Echocardiogr. 2000;13:277–87.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Maffessanti F, Gripari P, Pontone G, Andreini D, Bertella E, Mushtaq S, et al. Three-dimensional dynamic assessment of tricuspid and mitral annuli using cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging. 2013;14:986–95.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ormiston JA, Shah PM, Tei C, Wong M. Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation. 1981;64:113–20.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Veronesi F, Corsi C, Sugeng L, Mor-Avi V, Caiani EG, Weinert L, et al. A study of functional anatomy of aortic-mitral valve coupling using 3D matrix transesophageal echocardiography. Circ Cardiovasc Imaging. 2009;2:24–31.PubMedCrossRefGoogle Scholar
  32. 32.
    Daimon M, Saracino G, Fukuda S, Koyama Y, Kwan J, Song JM, et al. Dynamic change of mitral annular geometry and motion in ischemic mitral regurgitation assessed by a computerized 3D echo method. Echocardiography. 2010;27:1069–77.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Watanabe N, Ogasawara Y, Yamaura Y, Wada N, Kawamoto T, Toyota E, et al. Mitral annulus flattens in ischemic mitral regurgitation: geometric differences between inferior and anterior myocardial infarction: a real-time 3-dimensional echocardiographic study. Circulation. 2005;112:I458–62.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Lee AP, Hsiung MC, Salgo IS, Fang F, Xie JM, Zhang YC, et al. Quantitative analysis of mitral valve morphology in mitral valve prolapse with real-time 3-dimensional echocardiography: importance of annular saddle shape in the pathogenesis of mitral regurgitation. Circulation. 2013;127:832–41.PubMedCrossRefGoogle Scholar
  35. 35.
    Watanabe N, Ogasawara Y, Yamaura Y, Kawamoto T, Akasaka T, Yoshida K. Geometric deformity of the mitral annulus in patients with ischemic mitral regurgitation: a real-time three-dimensional echocardiographic study. J Heart Valve Dis. 2005;14:447–52.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Kwan J, Qin JX, Popovic ZB, Agler DA, Thomas JD, Shiota T. Geometric changes of mitral annulus assessed by real-time 3-dimensional echocardiography: becoming enlarged and less nonplanar in the anteroposterior direction during systole in proportion to global left ventricular systolic function. J Am Soc Echocardiogr. 2004;17:1179–84.PubMedCrossRefGoogle Scholar
  37. 37.
    Chiechi MA, Lees WM, Thompson R. Functional anatomy of the normal mitral valve. J Thorac Surg. 1956;32:378–98.PubMedGoogle Scholar
  38. 38.
    Kunzelman KS, Cochran RP, Chuong C, Ring WS, Verrier ED, Eberhart RD. Finite element analysis of the mitral valve. J Heart Valve Dis. 1993;2:326–40.PubMedGoogle Scholar
  39. 39.
    Kunzelman KS, Cochran RP, Murphree SS, Ring WS, Verrier ED, Eberhart RC. Differential collagen distribution in the mitral valve and its influence on biomechanical behaviour. J Heart Valve Dis. 1993;2:236–44.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Carpentier AF, Lessana A, Relland JY, Belli E, Mihaileanu S, Berrebi AJ, et al. The “physio-ring”: an advanced concept in mitral valve annuloplasty. Ann Thorac Surg. 1995;60:1177–85; discussion 85–6.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Shanewise JS, Cheung AT, Aronson S, Stewart WJ, Weiss RL, Mark JB, et al. ASE/SCA guidelines for performing a comprehensive intraoperative multiplane transesophageal echocardiography examination: recommendations of the American Society of Echocardiography Council for Intraoperative Echocardiography and the Society of Cardiovascular Anesthesiologists Task Force for Certification in Perioperative Transesophageal Echocardiography. J Am Soc Echocardiogr. 1999;12:884–900.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Chaput M, Handschumacher MD, Guerrero JL, Holmvang G, Dal-Bianco JP, Sullivan S, et al. Mitral leaflet adaptation to ventricular remodeling: prospective changes in a model of ischemic mitral regurgitation. Circulation. 2009;120:S99–103.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Dal-Bianco JP, Levine RA. The mitral valve is an actively adapting tissue: new imaging evidence. Eur Heart J Cardiovasc Imaging. 2015;16:286–7.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Millington-Sanders C, Meir A, Lawrence L, Stolinski C. Structure of chordae tendineae in the left ventricle of the human heart. J Anat. 1998;192(Pt 4):573–81.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Degandt AA, Weber PA, Saber HA, Duran CM. Mitral valve basal chordae: comparative anatomy and terminology. Ann Thorac Surg. 2007;84:1250–5.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Liao J, Vesely I. A structural basis for the size-related mechanical properties of mitral valve chordae tendineae. J Biomech. 2003;36:1125–33.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Dal-Bianco JP, Aikawa E, Bischoff J, Guerrero JL, Handschumacher MD, Sullivan S, et al. Active adaptation of the tethered mitral valve: insights into a compensatory mechanism for functional mitral regurgitation. Circulation. 2009;120:334–42.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lam JH, Ranganathan N, Wigle ED, Silver MD. Morphology of the human mitral valve. I. Chordae tendineae: a new classification. Circulation. 1970;41:449–58.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Obadia JF, Casali C, Chassignolle JF, Janier M. Mitral subvalvular apparatus: different functions of primary and secondary chordae. Circulation. 1997;96:3124–8.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Messas E, Guerrero JL, Handschumacher MD, Conrad C, Chow CM, Sullivan S, et al. Chordal cutting: a new therapeutic approach for ischemic mitral regurgitation. Circulation. 2001;104:1958–63.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Messas E, Pouzet B, Touchot B, Guerrero JL, Vlahakes GJ, Desnos M, et al. Efficacy of chordal cutting to relieve chronic persistent ischemic mitral regurgitation. Circulation. 2003;108(Suppl 1):II111–5.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Messas E, Yosefy C, Chaput M, Guerrero JL, Sullivan S, Menasche P, et al. Chordal cutting does not adversely affect left ventricle contractile function. Circulation. 2006;114:I524–8.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Rusted IE, Scheifley CH, Edwards JE. Studies of the mitral valve. I. Anatomic features of the normal mitral valve and associated structures. Circulation. 1952;6:825–31.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Gorman JH 3rd, Gupta KB, Streicher JT, Gorman RC, Jackson BM, Ratcliffe MB, et al. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J Thorac Cardiovasc Surg. 1996;112:712–26.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Joudinaud TM, Kegel CL, Flecher EM, Weber PA, Lansac E, Hvass U, et al. The papillary muscles as shock absorbers of the mitral valve complex. An experimental study. Eur J Cardiothorac Surg. 2007;32:96–101.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Komeda M, Glasson JR, Bolger AF, Daughters GT 2nd, Ingels NB Jr, Miller DC. Papillary muscle-left ventricular wall “complex”. J Thorac Cardiovasc Surg. 1997;113:292–300; discussion 1.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kono T, Sabbah HN, Rosman H, Alam M, Jafri S, Goldstein S. Left ventricular shape is the primary determinant of functional mitral regurgitation in heart failure. J Am Coll Cardiol. 1992;20:1594–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Messas E, Guerrero JL, Handschumacher MD, Chow CM, Sullivan S, Schwammenthal E, et al. Paradoxic decrease in ischemic mitral regurgitation with papillary muscle dysfunction: insights from three-dimensional and contrast echocardiography with strain rate measurement. Circulation. 2001;104:1952–7.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lang RM, Mor-Avi V, Sugeng L, Nieman PS, Sahn DJ. Three-dimensional echocardiography: the benefits of the additional dimension. J Am Coll Cardiol. 2006;48:2053–69.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Delgado V, Tops LF, Schuijf JD, de Roos A, Brugada J, Schalij MJ, et al. Assessment of mitral valve anatomy and geometry with multislice computed tomography. JACC Cardiovasc Imaging. 2009;2:556–65.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Shanks M, Delgado V, Ng AC, van der Kley F, Schuijf JD, Boersma E, et al. Mitral valve morphology assessment: three-dimensional transesophageal echocardiography versus computed tomography. Ann Thorac Surg. 2010;90:1922–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kaji S, Nasu M, Yamamuro A, Tanabe K, Nagai K, Tani T, et al. Annular geometry in patients with chronic ischemic mitral regurgitation: three-dimensional magnetic resonance imaging study. Circulation. 2005;112:I409–14.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Myerson SG. Heart valve disease: investigation by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:7.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Enriquez-Sarano M, Miller FA Jr, Hayes SN, Bailey KR, Tajik AJ, Seward JB. Effective mitral regurgitant orifice area: clinical use and pitfalls of the proximal isovelocity surface area method. J Am Coll Cardiol. 1995;25:703–9.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003;16:777–802.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Adams DH, Rosenhek R, Falk V. Degenerative mitral valve regurgitation: best practice revolution. Eur Heart J. 2010;31:1958–66.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Garbi M, Monaghan MJ. Quantitative mitral valve anatomy and pathology. Echo Res Pract. 2015;2:R63–72.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2438–88.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Buck T, Plicht B, Kahlert P, Schenk IM, Hunold P, Erbel R. Effect of dynamic flow rate and orifice area on mitral regurgitant stroke volume quantification using the proximal isovelocity surface area method. J Am Coll Cardiol. 2008;52:767–78.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Adams DH, Anyanwu AC. The cardiologist’s role in increasing the rate of mitral valve repair in degenerative disease. Curr Opin Cardiol. 2008;23:105–10.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Chikwe J, Adams DH, Su KN, Anyanwu AC, Lin HM, Goldstone AB, et al. Can three-dimensional echocardiography accurately predict complexity of mitral valve repair? Eur J Cardiothorac Surg. 2012;41:518–24.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Agricola E, Oppizzi M, Maisano F, De Bonis M, Schinkel AF, Torracca L, et al. Echocardiographic classification of chronic ischemic mitral regurgitation caused by restricted motion according to tethering pattern. Eur J Echocardiogr. 2004;5:326–34.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Calafiore AM, Di Mauro M, Gallina S, Di Giammarco G, Iaco AL, Teodori G, et al. Mitral valve surgery for chronic ischemic mitral regurgitation. Ann Thorac Surg. 2004;77:1989–97.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Silbiger JJ. Mechanistic insights into ischemic mitral regurgitation: echocardiographic and surgical implications. J Am Soc Echocardiogr. 2011;24:707–19.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Yiu SF, Enriquez-Sarano M, Tribouilloy C, Seward JB, Tajik AJ. Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: a quantitative clinical study. Circulation. 2000;102:1400–6.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2017;30:303–71.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Hall SA, Brickner ME, Willett DL, Irani WN, Afridi I, Grayburn PA. Assessment of mitral regurgitation severity by Doppler color flow mapping of the vena contracta. Circulation. 1997;95:636–42.PubMedCrossRefGoogle Scholar
  78. 78.
    Schwammenthal E, Chen C, Benning F, Block M, Breithardt G, Levine RA. Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation. 1994;90:307–22.PubMedCrossRefGoogle Scholar
  79. 79.
    Biner S, Rafique A, Rafii F, Tolstrup K, Noorani O, Shiota T, et al. Reproducibility of proximal isovelocity surface area, vena contracta, and regurgitant jet area for assessment of mitral regurgitation severity. J Am Coll Cardiol Imaging. 2010;3:235–43.CrossRefGoogle Scholar
  80. 80.
    Utsunomiya T, Ogawa T, Doshi R, Patel D, Quan M, Henry WL, et al. Doppler color flow “proximal isovelocity surface area” method for estimating volume flow rate: effects of orifice shape and machine factors. J Am Coll Cardiol. 1991;17:1103–11.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Zoghbi WA, Quinones MA. Determination of cardiac output by Doppler echocardiography: a critical appraisal. Herz. 1986;11:258–68.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Mascherbauer J, Rosenhek R, Bittner B, Binder J, Simon P, Maurer G, et al. Doppler echocardiographic assessment of valvular regurgitation severity by measurement of the vena contracta: an in vitro validation study. J Am Soc Echocardiogr. 2005;18:999–1006.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Khanna D, Vengala S, Miller AP, Nanda NC, Lloyd SG, Ahmed S, et al. Quantification of mitral regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography. 2004;21:737–43.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kahlert P, Plicht B, Schenk IM, Janosi RA, Erbel R, Buck T. Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr. 2008;21:912–21.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Otsuji Y, Handschumacher MD, Schwammenthal E, Jiang L, Song JK, Guerrero JL, et al. Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation. 1997;96:1999–2008.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Irvine T, Li XN, Rusk R, Lennon D, Sahn DJ, Kenny A. Three dimensional colour Doppler echocardiography for the characterisation and quantification of cardiac flow events. Heart. 2000;84(Suppl 2):II2–6.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Iwakura K, Ito H, Kawano S, Okamura A, Kurotobi T, Date M, et al. Comparison of orifice area by transthoracic three-dimensional Doppler echocardiography versus proximal isovelocity surface area (PISA) method for assessment of mitral regurgitation. Am J Cardiol. 2006;97:1630–7.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Song JM, Kim MJ, Kim YJ, Kang SH, Kim JJ, Kang DH, et al. Three-dimensional characteristics of functional mitral regurgitation in patients with severe left ventricular dysfunction: a real-time three-dimensional colour Doppler echocardiography study. Heart. 2008;94:590–6.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Picano E, Pibarot P, Lancellotti P, Monin JL, Bonow RO. The emerging role of exercise testing and stress echocardiography in valvular heart disease. J Am Coll Cardiol. 2009;54:2251–60.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Lancellotti P, Gerard PL, Pierard LA. Long-term outcome of patients with heart failure and dynamic functional mitral regurgitation. Eur Heart J. 2005;26:1528–32.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ray S. The echocardiographic assessment of functional mitral regurgitation. Eur J Echocardiogr. 2010;11:i11–7.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of CardiologyWestmead HospitalWestmeadAustralia
  2. 2.Department of Medicine/CardiologyMassachusetts General HospitalBostonUSA

Personalised recommendations