Karst–River Interaction, Elaboration of an Indicator of the Karst Hydrological Conditions Applied to the Cèze River (Gard, France)

  • Hervé ChapuisEmail author
  • Jordan Ré-Bahuaud
  • Joël Jolivet
  • Frédéric Paran
  • Didier Graillot
Conference paper
Part of the Advances in Karst Science book series (AKS)


In the interest of creating a point of reference allowing to know the hydrological conditions of the karst system and for the purpose of using it as a parameter in a modeling procedure, a Hydric Indicator of the Karst (HIK) was established from the knowledge acquired on the functioning of the karstic hydrosystem of the Cèze. This indicator makes it possible to identify and qualify if at a specific moment “t” the karst is more able to contribute to the flow of the river or on the contrary to infiltrate precipitation water. The HIK is constructed from the data collected at the Ussel spring and the MétéoFrance rain gauge at the karst plateau of Méjannes-le-Clap (Gard, France). Chronic rainfall and discharge measurements from the source include two hydrological cycles. The discharge of the spring is calculated from the recordings of water amounts from autonomous water level probes. These water levels are converted into discharge through a calibration curve drawn for this study. For rain events with at least 4 mm of precipitation, ten parameters on rainfall characteristics and the flow rate of the Ussel spring are analyzed to obtain the HIK. In total, 74 events were analyzed. Finally, this indicator is a relevant entry for the simulation of flow variations in the river within its karst canyon. It is also a relevant tool for institutions which monitor the condition of the karst aquifer and thus can be a useful tool for the management of the aquifer. Our goal was to develop an approach, with which we can calculate and predict, what will be the response at karst spring, if we know current discharge of the Ussel spring and expected amount of rainfall.


Karst Hydrological indicator Spring discharges Cèze River 



The authors would like to thank MeteoFrance Company for the precipitation database and Ms Leila ESGAIB SÁNCHEZ for her contribution in reviewing the translation of this article.


  1. Bailly-Comte, V., Borrell-Estupina, V., Jourde, H., Pistre, S., 2012. A conceptual semidistributed model of the Coulazou River as a tool for assessing surface water–karst groundwater interactions during flood in Mediterranean ephemeral rivers. Water Resour. Res. 48, W09534. Scholar
  2. Bailly-Comte, V., Martin, J.B., Jourde, H., Screaton, E.J., Pistre, S., Langston, A., 2010. Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams. Journal of Hydrology 386, 55–66. Scholar
  3. Bakalowicz, M., 2005. Karst groundwater: a challenge for new resources. Hydrogeol J 13, 148–160. Scholar
  4. Fleury, P., Charlier, J.-B., Borrell, V., Coustau, M., 2011. Appui au SCHAPI 2011 - Module 1: Mise en place d’un indicateur d’aide à la décision pour la prévision de crue en milieu karstique: les bassins versants du Lez et de la Tardoire.Google Scholar
  5. Ford, D.C., Williams, P.W., 1989. Karst geomorphology and hydrology. Academic Division of Unwin Hyman London.Google Scholar
  6. Ford, D.C., Williams, P.W., 2007. Karst geomorphology and hydrology. Academic Division of Unwin Hyman London.Google Scholar
  7. Chapuis H., Jolivet, J., Ré-Bahuaud, J., Paran, F., Graillot, D., Guy, B., 2017. Displacement of Watershed between Two Karstic Rivers. IOP Conference Series: Earth and Environmental Science 95, 022021.CrossRefGoogle Scholar
  8. Johannet, A., 2011. Modélisation par apprentissage statistique des systèmes naturels, ou en interaction avec un environnement naturel. Applications aux karsts, crues éclair et en robotique.Google Scholar
  9. Jolivet J. 2013. Nouveaux apports sur les traçages et les débits réalisés sur le bassin d’alimentation karstique de la bordure orientale du massif de Lussan, Canyon de la Cèze, Gard, France. Spelunca, p. 27–34.Google Scholar
  10. Jourde, H., Roesch, A., Guinot, V., Bailly-Comte, V., 2007. Dynamics and contribution of karst groundwater to surface flow during Mediterranean flood. Environ Geol 51, 725–730. Scholar
  11. Kiraly, L., 1998. Modelling karst aquifers by the combined discrete channel and continuum approach. Bulletin d’Hydrogéologie 16, 77–98.Google Scholar
  12. Pouzancre, H., 1971. Contribution à l’étude hydrogéologique des bassins d’alimentation de la Cèze, cours moyen et inferieur, Gard. Centre d’études et de recherches géologiques et hydrogéologiques.Google Scholar
  13. Ré-Bahuaud, J., Jolivet, J., Marmonier, P., Johannet, A., Graillot, D., Paran, F., Chapuis, H., Guy, B., Faroux, J., Creuzé des Châtelliers, M., Olivier, M.-J., Jacquy, M., Lawniczak, M., Novel, M., Savary, M., Salze, D., Vayssade, B., 2015. Caractérisation des échanges entre eaux superficielles (rivière) et eaux souterraines en domaine karstique. Exemple d’un affluent du Rhône, la Cèze (30). Rapport provisoire année 2 (2014–2015) (Action n°43 du Programme 2014 (action 49 en 2015) au titre de l’accord cadre Agence de l’Eau ZABR).Google Scholar
  14. White, W. B., 1988. Geomorphology and hydrology of karst terrains. New York: Oxford university press. (Vol. 464).Google Scholar
  15. WoKAM, 2017. World Karst Aquifer Map (WoKAM) 1: 40 000. Published in 2017 and presented at the 44th Congress of the International Association of Hydrogeologists (IAH). Dubrovnik/Croatia.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hervé Chapuis
    • 1
    Email author
  • Jordan Ré-Bahuaud
    • 2
  • Joël Jolivet
    • 3
  • Frédéric Paran
    • 1
  • Didier Graillot
    • 1
  1. 1.UMR EVS 5600, Department Process for Environment and Georesources, Saint-Etienne School of MinesUniversity of LyonSaint-EtienneFrance
  2. 2.UMR EVS 5600University of LyonLyonFrance
  3. 3.UMR 7300 ESPACEUniversity of Nice-Sophia-Antipolis and CNRSNiceFrance

Personalised recommendations