Advertisement

First Outcomes of a Project Dedicated to Monitoring Groundwater Resources in Apulia, Southern Italy

  • Mario PariseEmail author
  • Luca Benedetto
  • Michele Chieco
  • Antonello Fiore
  • Mina Lacarbonara
  • Isabella Serena Liso
  • Costantino Masciopinto
  • Luca Pisano
  • Antonietta Riccio
  • Michele Vurro
Conference paper
Part of the Advances in Karst Science book series (AKS)

Abstract

The deepest cave in Apulia, an almost entirely karst region in southeastern Italy, has recently been the object of a project aimed at evaluating the quality and quantity of the groundwater resources. The cave system, located in one of the most remarkable karst landforms in the region (Canale di Pirro polje), reaches the water table at a depth of −264 m. Diving explorations brought the total depth of the cave down to −324 m. This contribution illustrates the preliminary activities carried out during the project, with a particular focus on geology, morphology and structural geology of the cave system and surrounding areas, together with hydrogeological research and chemical analyses of the groundwater.

Keywords

Karst Hydrogeology Polje Groundwater resources Speleology 

Notes

Acknowledgements

Luigi Spalluto is kindly acknowledged for the petrographic analyses performed on the thin sections.

References

  1. Bosellini, A. & Parente, M. (1994). The Apulia Platform margin in the Salento peninsula (southern Italy). Giornale di Geologia, 56 (2), 167–177.Google Scholar
  2. Cotecchia, V. (1993). Gestione e salvaguardia delle acque sotterranee in Puglia. Quad. IRSA, 94, 2.1–2.23.Google Scholar
  3. Cotecchia, V. (2014). Le acque sotterranee e l’intrusione marina in Puglia: dalla ricerca all’emergenza nella salvaguardia della risorsa. Memorie Descrittive Carta Geologica d’Italia, 92, 416 pp.Google Scholar
  4. De Waele, J. & Parise, M. (2013). Discussion on the article “Coastal and inland karst morphologies driven by sea level stands: a GIS based method for their evaluation”. Earth Surface Processes and Landforms, 38 (8), 902–907.CrossRefGoogle Scholar
  5. Doglioni, C., Mongelli, F. & Pieri, P. (1994). The Puglia uplift (SE Italy): an anomaly in the foreland of the Apenninic subduction due to buckling of a thick continental lithosphere. Tectonics, 13, 1309–1321.CrossRefGoogle Scholar
  6. Fiore, A., Fazio, N.L., Lollino, P., Luisi, M., Niccoli, M.N., Pagliarulo, R., Perrotti, M., Pisano, L., Spalluto, L., Vennari, C., Vessia, G. & Parise, M. (2018). Evaluating the susceptibility to anthropogenic sinkholes in Apulian calcarenites, southern Italy. In: Parise, M., Gabrovsek, F., Kaufmann, G. & Ravbar, N. (eds) Advances in Karst Research: Theory, Fieldwork and Applications. Geol. Soc. London, sp. publ. 466, 381–396. First published online January 4, 2018,  https://doi.org/10.1144/SP466.20.CrossRefGoogle Scholar
  7. Grassi, D. (1973). Fondamentali aspetti dell’idrogeologica carsica della Murgia (Puglia), con particolare riferimento al versante adriatico. Geol. Appl. e Idrogeol., 8 (II), 285–313.Google Scholar
  8. Luperto Sinni, E. & Reina, A. (1996). Gli hiatus del Cretaceo delle Murge: confronto con dati offshore. Mem. Soc. Geol. It., 51, 719–727.Google Scholar
  9. Maggiore, M. (1991). Aspetti idrogeologici degli acquiferi pugliesi in relazione alla ricarica artificiale. Proc. Workshop IRSA-Regione Puglia: Trasferimento di tecnologie e metodologie per la gestione delle risorse idriche, Valenzano (Bari), June 10–11, 1991, Quaderni CNR/IRSA, no. 94, Rome, Italy.Google Scholar
  10. Maggiore, M. & Pagliarulo, P. (2004). Circolazione idrica ed equilibri idrogeologici negli acquiferi della Puglia. Geologi e Territorio, 1, 13–35.Google Scholar
  11. Masciopinto, C. & Liso, I.S. (2016). Assessment of the impact of sea-level rise due to climate change on coastal groundwater discharge. Science of the Total Environment, 569–570, 672–680.CrossRefGoogle Scholar
  12. Masciopinto, C., Semeraro, F., La Mantia, R., Inguscio, S. & Rossi, E. (2006). Stygofauna abundance and distribution in the fissures and caves of the Nardò (S Italy) fractured aquifer subject to reclaimed water injections. Geomicr. J., 23, 267–278.CrossRefGoogle Scholar
  13. Masciopinto, C., Liso, I.S., Caputo, M.C. & De Carlo, L. (2017). An Integrated Approach Based on Numerical Modelling and Geophysical Survey to Map Groundwater Salinity in Fractured Coastal Aquifers. Water, 9, 875.CrossRefGoogle Scholar
  14. Parise, M. (2006). Geomorphology of the Canale di Pirro karst polje (Apulia, Southern Italy). Zeitschrift für Geomorphologie N.F. 147, 143–158.Google Scholar
  15. Parise, M. (2011). Surface and subsurface karst geomorphology in the Murge (Apulia, southern Italy). Acta Carsologica, 40 (1), 79–93.CrossRefGoogle Scholar
  16. Parise, M. (2017). Engineering-geological studies in artificial cavities, aimed at evaluating the possibility of failures in underground settings. Proc. Int. Congr. Artificial Cavities “Hypogea 2017”, 137–144.Google Scholar
  17. Parise, M. & Pascali, V. (2003) Surface and subsurface environmental degradation in the karst of Apulia (southern Italy). Environmental Geology, 44, 247–256.CrossRefGoogle Scholar
  18. Parise, M. & Benedetto, L. (2018). Surface landforms and speleological investigation for a better understanding of karst hydrogeological processes: a history of research in southeastern Italy. In: Parise, M., Gabrovsek, F., Kaufmann, G. & Ravbar, N. (eds) Advances in Karst Research: Theory, Fieldwork and Applications. Geol. Soc. London, sp. publ. 466, 137–153. First published online January 25, 2018,  https://doi.org/10.1144/SP466.25.CrossRefGoogle Scholar
  19. Pepe, P., Pentimone, N., Garziano, G., Martimucci, V. & Parise, M. (2013). Lessons learned from occurrence of sinkholes related to man-made cavities in a town of southern Italy. Proc. 13th Multidisc. Conf. Sinkholes and Engng. Environ. Impacts of Karst, 393–401.Google Scholar
  20. Pieri, P., Festa, V., Moretti, M. & Tropeano, M. (1997). Quaternary tectonic activity of the Murge area (Apulian foreland, southern Italy). An. Geof., 40, 1395–1404.Google Scholar
  21. Rudnicki, J. (1980). Karst in coastal areas - development of karst processes in the zone of mixing of fresh and saline water (with special reference to Apulia, Southern Italy). Studia Geologica Polonica, 65, 9–59.Google Scholar
  22. Tropeano, M. & Spalluto, L. (2006). Present-day temperature-type carbonate sedimentation on Apulia shelves (Southern Italy). GeoActa, 5, 129–142, Bologna.Google Scholar
  23. Tulipano, L. (1988). Temperature logs interpretation for the identification of preferential flow pathways in the coastal carbonatic and karstic aquifer of the Salento peninsula (Southern Italy). Proc. 21st Congress IAH, 956–961.Google Scholar
  24. Tulipano, L. & Fidelibus, M.D. (2002). Mechanisms of groundwaters salinisation in a coastal karstic aquifer subject to over-exploitation. Proc. 17th SWIM, Delft (The Netherlands), 39–49.Google Scholar
  25. Tulipano, L., Cotecchia, V. & Fidelibus, M.D. (1990). An example of multitracing approach in the studies of karstic and coastal aquifers. Proc. Int. Symp. “Hydrogeologic processes in karst terranes”, IAHS publ. 207, 381–389.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mario Parise
    • 1
    • 2
    Email author
  • Luca Benedetto
    • 3
  • Michele Chieco
    • 4
  • Antonello Fiore
    • 5
  • Mina Lacarbonara
    • 6
  • Isabella Serena Liso
    • 7
  • Costantino Masciopinto
    • 7
  • Luca Pisano
    • 2
  • Antonietta Riccio
    • 4
  • Michele Vurro
    • 7
  1. 1.Department of Earth and Environmental SciencesUniversity Aldo MoroBariItaly
  2. 2.National Research CouncilIRPIBariItaly
  3. 3.CAI GASPGioia del ColleItaly
  4. 4.Ass. Qualità dell’AmbienteRegione PugliaBariItaly
  5. 5.Autorità di Distretto dell’Italia MeridionaleValenzano (Bari)Italy
  6. 6.ARPAPugliaItaly
  7. 7.National Research CouncilIRSABariItaly

Personalised recommendations