Advertisement

Hydrochemical and Isotopic Characterization of Karst Aquifer in the Region of Tebessa, Northeast Algeria

  • Radhia LegriouiEmail author
  • Fethi Baali
  • Ilhem Abdeslam
  • Amor Hamad
  • Philippe Audra
  • Didier Cailhol
  • Stéphane Jaillet
Conference paper
Part of the Advances in Karst Science book series (AKS)

Abstract

In this work, we present results of the hydrogeological, hydrochemical and isotopic studies on groundwater samples from the karst aquifer in the region of Tebessa, Northeast Algeria. The study area is characterized by a semiarid climate, with a very hot boiling, dry summer and freezing, humid winter. The karstic aquifer system that overlooks this study area is drained by a number of springs; the most important of which are those of Ain Youkous, Ain Troubia, Ain El Megalib, Ain Gaagaa and Ain Sari. They are located at different altitudes and spaced fairly large distances. The karst system has a complex functioning. The hydrochemical data (major ion geochemistry) indicate that these groundwaters are characterized by the dominance of Ca–HCO3–SO4 and Ca–Cl–SO4 water types. The main factors controlling the groundwater composition, its seasonal variations, and the rhythm of recharge are geology, because of the presence of different carbonate formations, and additionally elevation and the rate of karst development. Using stable isotope analysis data, δ18O and δ2H relationships show that all waters are meteoric in origin.

Keywords

Hydrochemical Isotope Karst aquifer Tebessa Algeria 

Notes

Acknowledgements

The authors thank the anonymous reviewers for their constructive comments. I am grateful to the numerous people who helped me in the preparation of this paper especially laboratory of water and environment at the university of Larbi Tebessi—Tébessa.

I would like also to thank sincerely both my family and friends for their encouragement and support.

Conflict of Interest The author declares that she/he has no conflict of interest.

References

  1. Ademoroti CMA (1996) Standard methods for water and effluents analysis. Fodulex Press Ltd, Ibadan, pp 32–34Google Scholar
  2. Amor H, Riheb H, Fethi B, et al (2018) Conceptual model for karstic aquifers by combined analysis of GIS, chemical, thermal, and isotopic tools in Tuniso-Algerian transboundary basin. Published by Arabian Journal of Geosciences (2018) 11:409  https://doi.org/10.1007/s12517-018-3773-2
  3. APHA (1999) Standard methods for the examination of water and wastewater. 20th ect. APHA, AWWA, WPCF, New YorkGoogle Scholar
  4. Araguas LJ, Diaz Teijeiro MF (2005) Isotope composition of precipitation and water vapour in the Iberian Peninsula: first results of the Spanish network of isotopes in precipitation. In: international atomic energy agency—isotopic composition of precipitation in the Mediterranean Basin in relation to air circulation patterns and climate. Int At Energy Agency 1453:173–190Google Scholar
  5. Baali (2007) Contribution à l’étude hydrogéologique, hydrochimique et à la vulnérabilité d’un système aquifère karstique en zone semi-aride. Cas du plateau de Chéria, N. E. Algérien. Thèse de doctorat en sciences, Universite d’Annaba, AlgérieGoogle Scholar
  6. Baali F, Rouabhia AK, Kherici N, Djabri L (2006) Natural chemical tracers of urban pollution: case of born example of application on the area of Algerian Cheria. WRP, LLC ISNB-13: 978-1-887201647-6 Michigan, USA pp 39–45Google Scholar
  7. Bensaoula F (2006) Karstification, hydrogéologie et vulnérabilité des eaux karstiques. Mise au point d’outils pour leur protection (Application aux Monts de Tlemcen – Ouest Oranais), Université de Tlemcen, Tlemcen, 203pGoogle Scholar
  8. Celle et al (2001) Caract_erisation isotopique des pluies en Tunisie. Essai de typologie dans la r_egion de Sfax. C.R. Acad. Sci. Paris 6, 625e631Google Scholar
  9. Coleman et al (1982) Réduction de l’eau avec du zinc pour l’analyse des isotopes de l’hydrogène. Anal Chem 54:993–995CrossRefGoogle Scholar
  10. Collignon B (1991) Les principaux karsts d’Algérie. Congrès SSS. Actes pp. 37–43Google Scholar
  11. Craig H (1961) Isotopic variation in meteoric waters. Science 133, 1702e1703CrossRefGoogle Scholar
  12. Dubourdieu and Durozoy (1950) Observations tectoniques dans les environs de Tébessa et de l’Ouenza (Algérie). Bulletin de la Société géologique de France, (V), 20, 4–6, 257-266, ParisGoogle Scholar
  13. Epstein S, Mayeda T.K (1953) Variations of the JSO/160 ratios in natural waters. Geochim Cosmochim. Acta, 4:213–224CrossRefGoogle Scholar
  14. Fehdi CH, Belfar D, Baali F (2015) Characterization of the main karst aquifers of the Tezbent Plateau, Tebessa Region, Northeast of Algeria, based on hydrogeochemical and isotopic data. Environ. Earth Sci.  https://doi.org/10.1007/s12665-015-4480-xCrossRefGoogle Scholar
  15. Fontes et al (1986) Estimation of long term, diffuse groundwater discharge in the northern Sahara using stable isotope profiles in soil water. J Hydrol 86:315–327CrossRefGoogle Scholar
  16. Fontes J (1980) Environmental isotopes in ground water hydrology. In: Fritz J, Fontes J (eds) Handbook of environmental isotope geochemistry. Elsevier, Amsterdam, l (A):75CrossRefGoogle Scholar
  17. Guefaifia (2007) Identification et caractérisation d’un milieu karstique et sa contribution à l’alimentation d’un champ captant: cas de la zone de Bouakous-Hammamet, région de Tebessa. Thèse de doctorat en sciences, Université d’Annaba, Algérie. 256 pGoogle Scholar
  18. Hamad A, Baali F, Hadji R, et al (2018) Hydrogeochemical characterization of water mineralization in Tebessa-Kasserine karst system (Tuniso-Algerian Transboundry basin). Euro-Mediterranean J Environ Integr 3(1):7  https://doi.org/10.1007/s41207-017-0045-6CrossRefGoogle Scholar
  19. Legrioui R, Baali F, Hamad A, et al (2017) Water Quality At A Karstic Aquifer In The Region Of Tebessa, Northeast -Algeria-. International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMREES17, 21–24 April 2017, Beirut, Lebanon. Energy Procedia 119 (2017) 356–366. 1876-6102 © 2017 The Authors. Published by Elsevier LtdGoogle Scholar
  20. Maliki MA (2000) Etude hydrogéologique, hydrochimique et isotopique du système aquifère de Sfax (Tunisie). Doc Thesis. Tunis II University, Tunis, TunisiaGoogle Scholar
  21. Piper AM (1944) A graphic procedure in geochemical interpretation of water analysis. Trans AmerGeophys Union, 25(6):914–928; Richmond, VAGoogle Scholar
  22. Quinif (1983) La reculée et le réseau karstique de Bou Akous (Hammamet, Algérie de l’Est) Géomorphologie et aspects évolutifs. Revue Belge de Géographie, Vol. 4, 89–111Google Scholar
  23. Rouabhia A, Baali F, FehdiCh (2009) Impact of agricultural activity and lithology on groundwater quality in the Merdja area, Tebessa, Algeria. Arab J Geosci, Springer-Verlag, Berlin; Heidlerg.  https://doi.org/10.1007/12517-009-0087-4
  24. Rozanski K, Araguas L, Gonfiantini R (1993) Isotopic Patterns in Modern Global Precipitation. In: Continental Isotope Indicators of Climate. American Geophysical Union (monograph)Google Scholar
  25. Simler R (2004) Hydrochemistry Software multilanguage free distribution. Hydrogeology Laboratory of Avignon, Version 2Google Scholar
  26. Vila JM (1980) La chaine alpine de l’Algérie orientale et des confins Algéro-Tunisiens. Thèse de Doctorat- es -sciences, Université, Pierre et Marie curie, Paris VIGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Radhia Legrioui
    • 1
    Email author
  • Fethi Baali
    • 1
  • Ilhem Abdeslam
    • 1
  • Amor Hamad
    • 1
  • Philippe Audra
    • 2
  • Didier Cailhol
    • 3
  • Stéphane Jaillet
    • 3
  1. 1.Laboratory Water and Environment, Department of Earth and Universe SciencesTebessa UniversityTebessaAlgeria
  2. 2.Polytech’ LabUniversity of Nice Sophia-AntipolisSophia-Antipolis, NiceFrance
  3. 3.Laboratoire EDYTEMUniversity Savoie—Mont-Blanc, CNRSLe Bourget-du-lacFrance

Personalised recommendations