Advertisement

Detailed Water Quality Monitoring at Various Points of the Krásnohorská Cave System (Slovakia)

  • Peter MalíkEmail author
  • Juraj Michalko
  • Alexandra Pažická
  • Branislav Máša
  • Jaroslav Stankovič
Conference paper
Part of the Advances in Karst Science book series (AKS)

Abstract

Detailed karstic water quality monitoring was performed in the Krásnohorská Cave system in the Slovenský kras Mts./Silická planina karstic plateau formed by Triassic limestones. The cave itself is 1550 m long, formed by a huge underground stream that can be followed in more than 400-m-long corridor. Here, two small visible side inlets to the stream are found. Some 100 metres above the cave entrance underground stream disappears in a siphon to emerge on the ground surface as a Buzgó karstic spring (5.3–1355.8 L s−1 discharge). Two other (but smaller) karstic springs are situated on the foot of the same karstic plateau within a distance of 200 m from the Krásnohorská Cave entrance, with yet unknown karstic network behind. 150-m-deep hydrogeological borehole RHV-4, exploited as drinking water source for the neighbouring village, is situated just in front of the Krásnohorská Cave entrance. Water at six monitoring points—both side inlets to the major underground stream and its end point (spring at the cave entrance), as well as smaller side springs and the borehole outside were regularly sampled for chemistry, δ18O, δ2H and tritium content in the period of June 2015–June 2016. Approximate weekly samplings were accompanied by precipitation sampling in the same extent, but in two weeks interval. Surprisingly high stability of karstic groundwater chemical composition was found. Content of dissolved HCO3, Ca2+, Mg2+, K+, Na+, Cl and NO3 remained unchanged even in the period of 20-fold raise of discharge of the Buzgó spring during the snowmelt period in February/March 2016. Results of 573 chemical analyses also show a great similarity of karstic groundwater chemical composition at different monitoring points. This was not the case of SO42−. Results of analyses pointed out that one part of the water circulation system is influenced by dissolved sulphates of geogenic origin, very probably occurring in Lower Triassic shales. These were not found in the outcrops in the recharge area, but their strong influence on water chemistry is characteristic. Groundwater flow rates of partial water circuit which is passing shales with sulphates seem to be more stable. Sulphate content is then diluted at high water stages and increases with groundwater depletion in respective monitoring points. Mean values of δ18O and δ2H are very similar at all monitoring points, found in the narrow intervals of −9.48 to −9.04‰ and −64.5 to −61.3‰, respectively. Recharging precipitation in the monitored period was somewhat heavier (−8.77 and −60.6‰) although the altitudinal difference of sampling places was more than 230 m. Comparing individual samplings in time series, δ18O differences may reach the range of 1.47‰ comparing to the 0.44‰ span of mean values (ranges of up to 10.7‰ in individual samplings and 3.2‰ in mean values for δ2H). Time series of δ18O and δ2H therefore point to different patterns/different mean transit times of water circulation at individual monitoring points.

Keywords

Water quality monitoring Karstic groundwater Chemistry time series Stable isotopes 

Notes

Acknowledgements

The results of this study could be obtained thanks to the project, coordinated by the European Commission as LIFE11ENV/SK/001023, entitled “Implementation of Sustainable Groundwater Use in the Underground Karst System of the Krásnohorská jaskyňa Cave” (acronym: KRASCAVE). The aim of this the project was to reduce the risk of contamination of drinking water in the underground karst ecosystem Krásnohorská cave through the implementation of innovation activities; the outputs of the project should also serve to reduce the risk of environmental impairment fragile ecosystems, depending on the quantity and quality groundwater. In the KRASCAVE project, the State Geological Institute of Dionýz Štúr Bratislava was acting as coordinating beneficiary and civic association Envi Slovakia Bratislava as associated beneficiaries. In addition to the European Commission, also the Ministry of Environment of Slovak Republic participated in the project co-financing.

References

  1. Bajtoš, P, Malík, P, Repková, R, Máša, B (2017) Geochemické modelovanie tvorby chemického zloženia vody Krásnohorskej jaskyne v Slovenskom krase [Geochemical modelling of karst water chemical composition formation at the Krásnohorská jakyňa cave, Slovak Karst Mts. (Western Carpathians); in Slovak with English summary]. Mineralia Slovaca, 49(2017)1: 73–94Google Scholar
  2. Bakalowicz, M (2005) Karst Groundwater: A Challenge for New Resources. Hydrogeology Journal 13(1):148 160CrossRefGoogle Scholar
  3. Bodiš, D, Lopašovská, M, Lopašovský, K, Rapant, S (2000) Chemické zloženie snehovej pokrývky na Slovensku – výsledky 25-ročného pozorovania [Chemical composition of snow pack in Slovakia - the results of 25 years monitoring; in Slovak with English summary]. Podzemná voda VI. (2):162–173Google Scholar
  4. Craig, H (1961) Standard for reporting concentration of deuterium and oxygen-18 in natural waters. Science (133):1833 1834CrossRefGoogle Scholar
  5. Erdös, M (1995) Jaskyne, priepasti a vyvieračky severnej časti Silickej planiny. Slovenský kras, Liptovský Mikuláš, 33: 115–127Google Scholar
  6. Fournier, M, Massei, N, Bakalowicz, M, Dussart-Baptista L, Rodet, L, Dupont, JP (2007) Using turbidity dynamics and geochemical variability as a tool for understanding the behavior and vulnerability of karst aquifer. Hydrogeology Journal 15(4):689 704CrossRefGoogle Scholar
  7. Gaál, Ľ (2008) Geodynamika a vývoj jaskýň Slovenského krasu. Speleologia Slovaca, 1. Liptovský Mikuláš, Správa slovenských jaskýň, 2008. ISBN 978-80-8064-330-0, 168 pGoogle Scholar
  8. Goldscheider, N, Drew, D (Eds.) (2007) Methods in Karst Hydrogeology. Taylor & Francis, London, 264 ppGoogle Scholar
  9. IAEA (2002) Water and Environment Newsletter of the Isotope Hydrology Section, International Atomic Energy Agency. Issue No.16, November 2002: 5Google Scholar
  10. IAEA (2013) International Atomic Energy Agency. Global Network of Isotopes in Precipitation. Water Resources Programme – Global Network of Isotopes in Precipitation. Retrieved from http://wwwnaweb.iaea.org/napc/ih/IHS_resources
  11. Kováčová, E, Malík, P, Švasta, J, Bahnová, N, Pažická, A, Bajtoš, P, Grolmusová, Z (2017) Priestorové zmeny distribúcie mikroklimatických parametrov počas letného režimu prúdenia vzduchu v Krásnohorskej jaskyni [Spatial changes of distribution of microclimatic parameters during the summer ventilation mode in Krásnohorská Cave (Slovak Karst Mts., Slovakia); in Slovak with English summary]. Slovenský kras - Acta Carsologica Slovaca 55(1): 81 102Google Scholar
  12. Kronome, B. Boórová, D (2016) Geologická stavba Silickej planiny pri Krásnohorskej Dlhej Lúke [Geological structure of the Silická planina Plateau near the Krásnohorská Dlhá Lúka; in Slovak with English summary]. Geologické práce, Správy (129):55 78Google Scholar
  13. Malík, P, Gregor, M, Švasta, J, Haviarová D (2011) Interpretácia meraní teploty a mernej elektrickej vodivosti vody v profile podzemného vodného toku Krásnohorskej jaskyne. Slovenský kras/ Acta carsologica Slovaca, 49/1, Liptovský Mikuláš, 41–55Google Scholar
  14. Malík, P, Gregor, M, Černák, R, Bottlik, F, Šutarová, B, Otruba M (2014) Stupeň skrasovatenia horninového prostredia severného okraja Silickej planiny na základe analýzy výtokových čiar. Podzemná voda 20(2), 2014, Slovenská asociácia hydrogeológov, Bratislava, 128 141Google Scholar
  15. McGuire, KJ, McDonnell, JJ (2006) A review and evaluation of catchment transit time modelling. Journal of Hydrology 330(2006):543 563CrossRefGoogle Scholar
  16. Mello, J, Elečko, M, Pristaš, J, Reichwalder, P, Snopko, L, Vass, D, Vozárová, A (1996) Geologická mapa Slovenského krasu 1: 50 000. Ministerstvo životného prostredia, Geologický služba Slovenskej republiky, Bratislava. Map sheet at a scale of 1: 50 000Google Scholar
  17. Mudarra, M, Andreo, B, Barbera, JA, Mudry, J (2013) Hydrochemical dynamics of TOC and NO3- contents as natural tracers of infiltration in karst aquifers. Environmental Earth Sciences 71(2):507 523CrossRefGoogle Scholar
  18. Orvan, J, Vrábľová, M (1986) Rožňava - Horný Vrch, predbežný hydrogeologický prieskum. IHGP Žilina. Manuscript – archive of Geofond, ŠGÚDŠ Bratislava, arch. No. 63001, 69 pGoogle Scholar
  19. Roda, Š (1964) Jaskyňa Buzgó. Krásy Slovenska, 29, 8, Bratislava, 181 182Google Scholar
  20. Roda, Š (1966) Je najvyšší na svete? Krásy Slovenska, 43, 7, Bratislava, 258–259Google Scholar
  21. Roda, Š, Roda, Š ml., Ščuka, J (1986) Aplikácia fraktálnej analýzy na interpretáciu stopovacích skúšok. Slovenský kras, 24, Liptovský Mikuláš, 61–75Google Scholar
  22. Skřivánek, F (1965) Objev jeskyně Buzgó v Jihoslovenském krasu. Československý kras, 16, Praha, 139 pGoogle Scholar
  23. Stankovič, J (2003) Mapa Krásnohorskej jaskyne. Archív Štátnej ochrany prírody – Správy slovenských jaskýň Liptovský Mikuláš, map sheetGoogle Scholar
  24. Stankovič, J, Cílek, V (eds.), Bruthans, J, Cílek, V, Gaál, Ľ, Kovács Á, Rozložník, M, Stankovič, J, Schmelzová, R, Zeman, O, Kováč, Ľ, Mock, A, Ľuptáčik, P, Hudec, I, Nováková, A, Košel, V, Fenďa P (2005) Krásnohorská jaskyňa Buzgó. Speleoklub Minotaurus, Regionálna rozvojová agentúra Rožňava, 150 pGoogle Scholar
  25. Zwahlen, F (ed) (2004) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. COST Action 620 Final Report. Office for Official Publications of the European Communities, Luxembourg, 2004–XVIII, pp. 297Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Peter Malík
    • 1
    Email author
  • Juraj Michalko
    • 1
  • Alexandra Pažická
    • 1
  • Branislav Máša
    • 2
  • Jaroslav Stankovič
    • 3
  1. 1.Štátny geologický ústav Dionýza Štúra—Geological Survey of Slovak RepublicBratislava 11Slovakia
  2. 2.HES - COMGEO, spol. s r.o.Banská BystricaSlovakia
  3. 3.Speleoklub MinotaurusRožňavaSlovakia

Personalised recommendations