Advertisement

Artificial Tracer Tests Interpretation Using Transfer Function Approach to Study the Norville Karst System

  • Vianney SivelleEmail author
  • David Labat
  • Léa Duran
  • Matthieu Fournier
  • Nicolas Massei
Conference paper
Part of the Advances in Karst Science book series (AKS)

Abstract

Karstic aquifers are known for their high degree of nonlinearity and non-stationarity in their hydrodynamic behaviour. We used a transfer function approach (TFA) to interpret artificial tracer tests in Norville karst system (Normandy, France). The system’s behaviour is modelled as a conceptual reservoir with an assumed transfer function containing an ‘intrinsic’ part and a ‘boundary conditions dependent’ part. Additionally, a relationship between spring discharge and residence time distribution characteristics can be formulated. This constitutes new perspectives for testing pollution scenarios.

Keywords

Karstic system Artificial tracer test Transfer function 

References

  1. Becker, M., Bellin, A., 2013. A reservoir model of tracer transport for karstic flow systems. Hydrogeol J 21, 1011–1019.  https://doi.org/10.1007/s10040-013-0991-2CrossRefGoogle Scholar
  2. Cholet, C., 2017. Fonctionnement hydrogéologique et processus de transport dans les aquifères karstiques du Massif du Jura (Thèse de Doctorat). Université de Bourgogne Franche-ComtéGoogle Scholar
  3. Dewaide, L., Bonniver, I., Rochez, G., Hallet, V., 2016. Solute transport in heterogeneous karst systems: Dimensioning and estimation of the transport parameters via multi-sampling tracer-tests modelling using the OTIS (One-dimensional Transport with Inflow and Storage) program. Journal of Hydrology 534, 567–578.  https://doi.org/10.1016/j.jhydrol.2016.01.049CrossRefGoogle Scholar
  4. Dewaide, L., Collon, P., Poulain, A., Rochez, G., Hallet, V., 2017. Double-peaked breakthrough curves as a consequence of solute transport through underground lakes: a case study of the Furfooz karst system, Belgium. Hydrogeology Journal.  https://doi.org/10.1007/s10040-017-1671-4CrossRefGoogle Scholar
  5. Duran, L., Fournier, M., Massei, N., Dupont, J.-P., 2016. Assessing the Nonlinearity of Karst Response Function under Variable Boundary Conditions. Ground Water 54, 46–54.  https://doi.org/10.1111/gwat.12337CrossRefGoogle Scholar
  6. Dussart-Baptista, L., Massei, N., Dupont, J.-P., Jouenne, T., 2003. Transfer of bacteria-contaminated particles in a karst aquifer: evolution of contaminated materials from a sinkhole to a spring. Journal of Hydrology 284, 285–295.  https://doi.org/10.1016/j.jhydrol.2003.08.007CrossRefGoogle Scholar
  7. Ender, A., Goeppert, N., Goldscheider, N., 2018. Spatial resolution of transport parameters in a subtropical karst conduit system during dry and wet seasons. Hydrogeol J 1–15.  https://doi.org/10.1007/s10040-018-1746-xCrossRefGoogle Scholar
  8. Field, M.S., Leij, F.J., 2012. Solute transport in solution conduits exhibiting multi-peaked breakthrough curves. Journal of Hydrology 440–441, 26–35.  https://doi.org/10.1016/j.jhydrol.2012.03.018CrossRefGoogle Scholar
  9. Field, M.S., Pinsky, P.F., 2000. A two-region nonequilibrium model for solute transport in solution conduits in karstic aquifers.pdf. Journal of Contaminant Hydrology 44, 329–351CrossRefGoogle Scholar
  10. Ford, D., Williams, P.D., 2007. Karst Hydrogeology and Geomorphology. John Wiley & Sons, IncGoogle Scholar
  11. Fournier, M., Massei, N., Mahler, B.J., Bakalowicz, M., Dupont, J.P., 2008. Application of multivariate analysis to suspended matter particle size distribution in a karst aquifer. Hydrol. Process. 22, 2337–2345.  https://doi.org/10.1002/hyp.6828CrossRefGoogle Scholar
  12. Goldscheider, N., 2008. A new quantitative interpretation of the long-tail and plateau-like breakthrough curves from tracer tests in the artesian karst aquifer of Stuttgart, Germany. Hydrogeology Journal 16, 1311–1317.  https://doi.org/10.1007/s10040-008-0307-0CrossRefGoogle Scholar
  13. Gordy, M.B., 1996. Genetic Algorithms toolbox for MatlabGoogle Scholar
  14. Huysmans, M., Dassargues, A., 2005. Review of the use of Péclet numbers to determine the relative importance of advection and diffusion in low permeability environments. Hydrogeology Journal 13, 895–904.  https://doi.org/10.1007/s10040-004-0387-4CrossRefGoogle Scholar
  15. Käss, W., 1998. Tracing Technique in Geohydrology, 1st ed. CRC PressGoogle Scholar
  16. Labat, D., Mangin, A., 2015. Transfer function approach for artificial tracer test interpretation in karstic systems. Journal of Hydrology 529, 866–871.  https://doi.org/10.1016/j.jhydrol.2015.09.011CrossRefGoogle Scholar
  17. Leibundgut, C., Maloszewski, P., Külls, C., 2009. Artificial Tracers, in: Tracers in Hydrology. John Wiley & Sons, Ltd, pp. 57–122Google Scholar
  18. Levenspiel, O., 2012. Tracer Technology, Fluid Mechanics and Its Applications. Springer New York, New York, NYCrossRefGoogle Scholar
  19. Li, G., Loper, D.E., Kung, R., 2008. Contaminant sequestration in karstic aquifers: Experiments and quantification. Water Resources Research 44.  https://doi.org/10.1029/2006WR005797
  20. Massei, N., Dupont, J.P., Mahler, B.J., Laignel, B., Fournier, M., Valdes, D., Ogier, S., 2006a. Investigating transport properties and turbidity dynamics of a karst aquifer using correlation, spectral, and wavelet analyses. Journal of Hydrology 329, 244–257.  https://doi.org/10.1016/j.jhydrol.2006.02.021CrossRefGoogle Scholar
  21. Massei, N., Lacroix, M., Wang, H.Q., Mahler, B.J., Dupont, J.P., 2002. Transport of suspended solids from a karstic to an alluvial aquifer: the role of the karst/alluvium interface. Journal of Hydrology 260, 88–101.  https://doi.org/10.1016/S0022-1694(01)00608-4CrossRefGoogle Scholar
  22. Massei, N., Wang, H.Q., Dupont, J.P., Rodet, J., Laignel, B., 2003. Assessment of direct transfer and resuspension of particles during turbid floods at a karstic spring. Journal of Hydrology 275, 109–121.  https://doi.org/10.1016/S0022-1694(03)00020-9CrossRefGoogle Scholar
  23. Massei, N., Wang, H.Q., Field, M.S., Dupont, J.P., Bakalowicz, M., Rodet, J., 2006b. Interpreting tracer breakthrough tailing in a conduit-dominated karstic aquifer. Hydrogeology Journal 14, 849–858.  https://doi.org/10.1007/s10040-005-0010-3CrossRefGoogle Scholar
  24. Mohammadi, Z., Gharaat, M.J., Field, M., 2018. The Effect of Hydraulic Gradient and Pattern of Conduit Systems on Tracing Tests: Bench-Scale Modeling. Groundwater.  https://doi.org/10.1111/gwat.12659CrossRefGoogle Scholar
  25. Nash, J.E., 1957. The form of the instantaneous unit hydrograph. International Association of Scientific Hydrology, Publ 3, 114–121Google Scholar
  26. Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology 10, 282–290.  https://doi.org/10.1016/0022-1694(70)90255-6CrossRefGoogle Scholar
  27. Toride, N., Leu, F.J., Van Genuchten, M.T., 1993. A Comprehensive Set of Analytical Solutions for Nonequilibrium Solute Transport With First-Order Decay and Zero-Order Production. Water Resources Research 29, 2167–2182CrossRefGoogle Scholar
  28. Walas, S.M., 2005. Chemical reaction engineering handbook of solved problems. Gordon and BreachGoogle Scholar
  29. Wang, H.Q., Crampon, N., Huberson, S., Garnier, J.M., 1987. A linear graphical method for determining hydrodispersive characteristics in tracer experiments with instantaneous injection. Journal of Hydrology 95, 143–154.  https://doi.org/10.1016/0022-1694(87)90121-1CrossRefGoogle Scholar
  30. Worthington, S.R.H., Soley, R.W.N., 2017. Identifying turbulent flow in carbonate aquifers. Journal of Hydrology 552, 70–80.  https://doi.org/10.1016/j.jhydrol.2017.06.045CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vianney Sivelle
    • 1
    Email author
  • David Labat
    • 1
  • Léa Duran
    • 2
  • Matthieu Fournier
    • 3
  • Nicolas Massei
    • 4
  1. 1.Géosciences Environnement Toulouse (UMR 5563 CNRS UPS IRD CNES), Université de Toulouse, FranceToulouseFrance
  2. 2.Department of Civil, Structural and Environmental EngineeringUniversity of Dublin Trinity CollegeDublinIreland
  3. 3.Normandie Univ, UNIROUEN, UINCAEN, CNRS, M2CRouenFrance
  4. 4.Mont Saint Aignan CedexFrance

Personalised recommendations