Advertisement

Point Dilution Tracer Test to Assess Slow Groundwater Flow in an Auxiliary Karst System (Lake of Fontaine de Rivîre, Belgium)

  • Philippe MeusEmail author
  • Jérémy Flament
  • Luc Willems
  • Luc Funcken
  • Gauthier Roba
  • Claire A. Chauveau
  • Jean Godissart
  • Camille Ek
Conference paper
Part of the Advances in Karst Science book series (AKS)

Abstract

The quantification of mass transfer through auxiliary karst systems is addressed by using a specific point dilution long-term tracer test. The physical functioning of such systems is usually only inferred by hydrodynamical and environmental tracer data, whose interpretation often relies on invalidated assumptions. The new approach is a way for experimentally validating or complementing the classical approaches. The lake of Fontaine de Rivîre is an auxiliary karst system in the Frasnian limestones of the Ourthe Valley in Belgium. Its particular confinement was studied by conjunctional use of natural responses and single-point dilution tracer test, with an injection of 41 g of uranine on 22 March 2017. The tracer test was monitored during one year using fluorometers, water and charcoal samplings at five points in the lake and six points at the surface (no connection having been established outside). A slow flow (in the order of magnitude of 1 m/h) of the lake could be observed and some mixing processes identified. The dilution of the tracer along the year indicates an average discharge of only 0.16 l/s. This low discharge is compatible with the high confinement of the lake also proved by its high homogeneity and stability (temperature and conductivity). However, the level fluctuations are apparently not compatible with this renewal, and especially with the low rate of dilution of the tracer observed during winter in the lake. This can thus be explained by pressure transfers from the surroundings, without necessarily high fluxes of water. The delays for the responses have also been quantified by cross-correlations for the whole period of monitoring from 2007 to 2018.

Keywords

Dilution test Uranine Active charcoal Natural tracer Karst flow Climate 

Notes

Acknowledgements

This research was not supported by any fund. This is a good reason why we are especially grateful to those people who contributed to the achievement. The owner of the property Ranscelot is acknowledged for authorizing the access to the cave and allowing it to be protected for scientific studies. J.-M Marion provided great help with his feeling of “real” geologist and providing unpublished maps. Johan Derouane contributed to the GIS management. The lake has been photographed many times, but the best picture is here included thanks to Paul De Bie. Finally, I would like to express my gratitude to Alain Mangin (†) and to Michel Bakalowicz who showed me the way and motivation for understanding karst aquifers.

References

  1. Abbott B, Baranov V, Mendoza-Lera C et al. (2016) Using multi-tracer inference to move beyond single-catchment ecohydrology. Earth-Science Reviews, 160 (2016): 19–42CrossRefGoogle Scholar
  2. Bakalowicz M (1999) Connaissance et gestion des ressources en eaux souterraines dans les régions karstiques. Bassin Rhône-Méditerranée-Corse, Guide Technique no. 3, juin 1999Google Scholar
  3. Bakalowicz M, Crochet P, D’Hulst D et al. (1994) High discharge pumping in a vertical cave, fundamental and applied results. In: Basic and applied hydrogeological research in French karstic areas. Cost 65 Action. Hydrogeological aspects of groundwater protection in karstic areas. Crampon and Bakalowicz ed. European Commission, pp 93–110Google Scholar
  4. Boulvain F, Bultynck P, Coen M et al. (1999) Les formations du Frasnien de la Belgique. Memoirs of the Geological Survey of Belgium, no. 44-1999: 1–125Google Scholar
  5. Climat.be (2018) Le climat en Belgique. Observations en Belgique. Température. http://www.climat.be/fr-be/changements-climatiques/en-belgique/observations-en-belgique. Accessed 19 March 2018
  6. Culbertson CT, Jacobson SC, Ramsey JM (2002) Diffusion coefficient measurements in microfluidic devices. Talanta 56 (2002): 365–373CrossRefGoogle Scholar
  7. Delvaux M, Steisel M (2009) Etude de l’influence de la marée terrestre sur les variations piézométriques de la nappe de la craie à Spiennes (Mons). Mémoire, UCL Louvain-la-NeuveGoogle Scholar
  8. Dewaide L, Collon P, Poulain A et al. (2017) Double-peaked breakthrough curves as a consequence of solute transport through underground lake: a case study in the Furfooz karst system, Belgium. Hydrogeology Journal. Published on-line 26 Sep 2017Google Scholar
  9. Dörfliger N (2010) Guide méthodologique. Les outils de l’hydrogéologie karstique. Avec la participation de Ph. Crochet, R. Guerin, N. Jozja, B. Marsaud, P.-H. Mondain, Ph. Muet, V. Plagnes. BRGM RP-58237-FRGoogle Scholar
  10. Dunn JR (1961) Nouveau procédé de détection de la fluorescéine. Spelunca 4ème série: 1–26Google Scholar
  11. Dusar M, Gullentops F (1989) Stratigraphie et tectonique dans la region d’Hamoir-sur-Ourthe. Aardkundige mededelingen vol.4 Leuven University Press 1989Google Scholar
  12. Ek C, Godissart J (2009) Extreme increase of CO2 in Belgian caves. Earth Sciences, 2009 ICS Proceedings, 15th International Congress of Speleology: 1467–1473Google Scholar
  13. Gaigalas AK, Li L, Henderson O et al. (2001) The development of fluorescence intensity standards. J. Res. Nat. Inst. Stand. Technol. 106: 381–389CrossRefGoogle Scholar
  14. Gaspar E, Oraseanu I (1987) Natural and artificial tracers in the study of the hydrodynamics of karst. Theoretical and Applied Karstology, vol.3, 1987: 32–106Google Scholar
  15. Godissart J (1994) Le cycle annuel des températures et du CO2 dans la grotte de Fontaine de Rivîre à Hamoir (Belgique). Publ. Serv. Géol. Luxembourg, vol. XXVII, Comptes-rendus du colloque international de karstologie à Luxembourg, 1994: 179–185Google Scholar
  16. Grasso DA, Jeannin PY, Zwahlen F (2003) A deterministic approach to the coupled analysis of karst springs’ hydrographs and chemographs. Journal of Hydrology 271 (2003): 65–76CrossRefGoogle Scholar
  17. Guizerix J, Margrita R, Niemi A (1990) Tracer methodology. In: Guidebook on radioisotope tracers in industry. IAEA Vienna 1990. Technical reports series no. 316: 39–92Google Scholar
  18. Jeannin PY (1996) Structure et comportement des aquifères karstiques. Thèse. Université de NeuchâtelGoogle Scholar
  19. Kiraly L (2003) Karstification and groundwater flow. Speleogenesis and Evolution of Karst Aquifers, 1(3), September 2003: 1–25Google Scholar
  20. Lallemand A, Paloc H (1964) La méthode de détection au charbon actif pour les opérations de traçage à la fluorescéine. Quelques exemples d’application. BRGM DS 64 A47: 1–15Google Scholar
  21. Mangin A (1975) Contribution à l’étude hydrodynamique des aquifères karstiques. Université de Dijon. Laboratoire du CNRS Moulis. Thèse publiée dans les Ann. de Spéléologie, 1974 no. 29 (3): 283–332, 1974 no. 29 (4): 495–601, 1975 no. 30 (1): 21–124Google Scholar
  22. Mangin A (1984) Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale. Journal of Hydrology, 67 (1984): 25–43CrossRefGoogle Scholar
  23. Mangin A (1994) Karst hydrogeology. In: Groundwater Ecology, Academic Press, pp 43–67Google Scholar
  24. Mangin A, Molinari J, Paloc H (1976) Les traceurs en hydrogéologie karstique. Leur apport à la connaissance des réservoirs aquifères calcaires. La Houille Blanche No. 3–4 1976: 261–267Google Scholar
  25. Marion JM, Barchy L (in press) Carte géologique de la Wallonie à l’échelle 1/25.000. Hamoir - Ferrières no. 49/5-6 et sa notice explicative. SPW/Editions, Cartes. DGARNE, Jambes (Namur). 1 carte couleur + 1 notice explicativeGoogle Scholar
  26. Marsaud B (1996) Les pompages en aquifère karstique. Une démarche d’interprétation des essais adaptée au karst. In: Pour une gestion active des ressources en eau d’origine karstique. BRGM Département Eau (1998). Rapport BRGM R 40126, pp 177–197Google Scholar
  27. Martel EA (1921) Nouveau traité des eaux souterraines. Paris, Librairie Octave Doin, Gaston Doin Ed., 1921Google Scholar
  28. Mathey B (1971) La méthode au charbon actif dans les essais de coloration à la fluorescéine. In: Actes du 4ème Congrès suisse de Spéléologie, Neuchâtel, septembre 1970, pp 53–61Google Scholar
  29. Meus P (1997) Méthode d’évaluation de la vulnérabilité des aquifères karstiques utilisant le traçage en continu. In: La géologie de l’ingénieur et l’eau dans le sous-sol. Colloque National. Leuven. 18-20/11/1997, 22/1-10Google Scholar
  30. Meus P (2006) Multitraçage sur le site de la source Péchet (Hamoir). Rapport EWTS 07-2006Google Scholar
  31. Meus P, Moureaux P, Gailliez S et al. (2014) In situ monitoring of karst springs in Wallonia (southern Belgium). Environ Earth Sci (2014) 71:533–541CrossRefGoogle Scholar
  32. Mondain PH, Muet P (2008) Proposition d’une grille d’évaluation des résultats des traçages en milieu karstique (au moyen de traceurs fluorescents). In: CFH Colloque Hydrogéologie et Karst au travers des travaux de Michel Lepiller, 17 mai 2008, pp 191–205Google Scholar
  33. Müller I (1981) L’eau dans les roches calcaires. Bulletin de la société Fribourgeoise des Sciences Naturelles. 70 (1/2) – 1981: 12–20Google Scholar
  34. Novakowski KS, Lapcevic PA, Voralek et al. (1995) Preliminary interpretation of tracer experiments conducted in a discrete rock fracture under conditions of natural flow. Geophysical Research Letters, vol.22, No. 11, June 1, 1995: 1417–1420CrossRefGoogle Scholar
  35. Smart CC, Simpson B (2002) Detection of fluorescent compounds in the environment using granular activated charcoal detectors. Environmental Geology (2002) 42: 538–545CrossRefGoogle Scholar
  36. Van Ruymbeke M, Zhu P, Cadicheanu N et al. (2007) Very weak signals (VWS) detected by stacking method according to different astronomical periodicities (HiCum). Nat. Hazards Earth Syst. Sci., 7: 651–656CrossRefGoogle Scholar
  37. Worthington SRH (2003) A comprehensive strategy for understanding flow in carbonate aquifer. Speleogenesis and Evolution of Karst Aquifers, 1(1), January 2003: 1–8Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Philippe Meus
    • 1
    Email author
  • Jérémy Flament
    • 2
  • Luc Willems
    • 3
  • Luc Funcken
    • 4
  • Gauthier Roba
    • 5
  • Claire A. Chauveau
    • 5
  • Jean Godissart
    • 6
  • Camille Ek
    • 3
  1. 1.European Water Tracing Services, Nandrin, and Club de Recherches Spéléologiques Ourthe AmblèveSprimontBelgium
  2. 2.Institut Scientifique de Service Public, Liège, and Club de Recherches Spéléologiques Ourthe AmblèveSprimontBelgium
  3. 3.Université de Liège, Liège, and Club de Recherches Spéléologiques Ourthe AmblèveSprimontBelgium
  4. 4.Service Public de Wallonie, Direction de la GéotechniqueLiègeBelgium
  5. 5.Club de Recherches Spéléologiques Ourthe AmblèveSprimontBelgium
  6. 6.Union Belge de SpéléologieNamurBelgium

Personalised recommendations